首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structure of thin pentacene film grown on a Cu(119) surface has been studied by near-edge X-ray absorption fine structure spectroscopy and scanning tunneling microscopy. The interaction between the π-molecular orbitals delocalized on the aromatic rings and the underlying copper substrate was deduced from XAS spectra. Pentacene molecules arrange with the main axis almost parallel with the Cu terraces according to the measured polarization dependence of the C 1s absorption spectra. For thickness exceeding 4 nm an upright arrangement of the molecules was observed with a dense herringbone-like ordering. The present study thus demonstrates that highly ordered pentacene films can be obtained on a Cu(119) vicinal surface both in a flat orientation for low coverages and in a bulk-like herringbone orientation for higher coverages.  相似文献   

2.
We present x-ray photoemission spectroscopy and highly resolved near-edge x-ray absorption fine structure spectroscopy measurements taken on pentacene thin films of different thicknesses deposited on a spin coated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) substrate. Thin films of pentacene were prepared by using organic molecular beam deposition in situ using strictly controlled evaporation conditions. Our investigations show that pentacene thin films on PEDOT:PSS are characterized by upright standing molecules. Due to the strong dichroic behavior, the calculated values of the molecular orientation give a clear indication not only of the real molecular arrangement in the films but also of a high orientational order. This high degree of molecular orientation order is a characteristic already of the first layer. The films show the tendency to grow on the PEDOT:PSS substrate following an island-fashion mode, with a relatively narrow intermixing zone at the interface between the pentacene and the polymer blend. The peculiarity of the growth of pentacene on PEDOT:PSS is due to the fact that the substrate does not offer any template for the nucleated films and thus exerts a lateral order toward the crystal structure arrangement. Under these conditions, the upright orientation of the molecules in the films minimizes the energy required for the system stability.  相似文献   

3.
The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures.  相似文献   

4.
The structural properties of coevaporated thin films of pentacene (PEN) and perfluoropentacene (PFP) on SiO(2) were studied using x-ray reflectivity and grazing incidence x-ray diffraction. Reciprocal space maps of the coevaporated thin films with different volume fractions reveal the coexistence of two different molecular mixed PEN-PFP phases together with the pure PEN and PFP crystallites. The crystal structure of PEN:PFP blends does not change continuously with volume fraction, instead the proportion of the appropriate phases changes, as seen from the diffraction analysis. Additional temperature dependent experiments reveal that the fraction of the two mixed PEN-PFP phases varies with growth temperature. The λ-phase (molecular plane parallel to the substrate) is metastable and induced by low growth temperature. The σ-phase (molecular plane nearly perpendicular to the substrate) is thermally stable and nucleates predominantly at high growth temperatures.  相似文献   

5.
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy is used to study the orientation of pentacene molecules within thin films on SiO2 for thicknesses ranging from monolayers to the bulk (150 nm). The spectra exhibit a strong polarization dependence of the pi* orbitals for all films, which indicates that the pentacene molecules are highly oriented. At all film thicknesses the orientation varies with the rate at which pentacene molecules are deposited, with faster rates favoring a thin film phase with different tilt angles and slower rates leading to a more bulklike orientation. Our NEXAFS results extend previous structural observations to the monolayer regime and to lower deposition rates. The NEXAFS results match crystallographic data if a finite distribution of the molecular orientations is included. Damage to the molecules by hot electrons from soft x-ray irradiation eliminates the splitting between nonequivalent pi* orbitals, indicating a breakup of the pentacene molecule.  相似文献   

6.
The growth of copper phthalocyanine thin films evaporated on polycrystalline gold is examined in detail using near edge x-ray absorption fine structure spectroscopy and surface sensitive x-ray photoemission spectroscopy. The combination of both methods allows distinguishing between the uppermost layers and buried interface layers in films up to approximately 3 nm thickness. An interfacial layer of approximately 3 ML of molecules with an orientation parallel to the substrate surface was found, whereas the subsequent molecules are perpendicular to the metal surface. It was shown that even if the preferred molecular orientation in thin films is perpendicular, the buried interfacial layer can be oriented differently.  相似文献   

7.
The growth of pentacene films on different metal (Ga, Pb, Bi, Ag) induced Si(111)-(square root(3) x square root(3))R30 degrees surfaces is investigated by scanning tunneling microscopy. On surfaces with high atomic surface roughness, such as GaSi-square root(3), beta-PbSi-square root(3), and alpha-BiSi-square root(3), pentacene forms an initial disordered wetting layer followed by the growth of crystalline thin films. The growth behavior is independent of the metallicity of the substrate surface in this regime. On the other hand, on surfaces with low adatom surface roughness, pentacene molecules form self-organized structures without forming a wetting layer. Moreover, the molecular orientation is critically dependent on the surface metallicity. This work reveals that the growth mode of pentacene on solid surfaces is determined by the combined effects of structural and electronic properties of the substrate.  相似文献   

8.
We have achieved a growth of highly oriented crystalline pentacene thin films, with preferred a-b in-plane orientation with respect to the rubbing direction of a rubbed polymethylene surface. The polymethylene thin film, generated on a gold surface by gold-catalyzed decomposition of diazomethane, was annealed and gently rubbed in a fixed direction by a flannelette cloth to serve as an alignment layer during the deposition of pentacene molecules. Various surface analysis techniques, including reflection absorption IR spectroscopy (RAIRS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, grazing incidence X-ray diffraction (GIXD), and atomic force microscopy were used to elucidate the structural details of the polymethylene and the pentacene thin films deposited on it. Two crystalline morphologies of pentacene thin film were observed: the minor one of rod-like molecular crystals having their long axes of the crystals perpendicular to the rubbing direction, and the dominant one of platelet-like and layered crystals having the molecular axes stand near vertical to the surface. Moreover, GIXD revealed that the rubbing on polymethylene indeed induced a preferential azimuthal alignment of pentacene crystallites. The deposition of pentacene at 25 degrees C led to a twin growth of crystallites with the [110] direction predominately aligned perpendicular to the rubbing direction. In contrast, the pentacene deposition at 50 degrees C produced twinned crystallites of lower twin angle and the [120] direction aligned parallel to the rubbing direction.  相似文献   

9.
The formation of crystalline para-sexiphenyl (6P) films on Cu(110) and Cu(110)-(2 × 1)O (Cu-O) has been studied by low energy electron diffraction, X-ray absorption spectroscopy and both in situ and ex situ X-ray diffraction methods to elucidate the transition from the initial monolayers to crystalline thin films. It is found that, for Cu-O, a single and, for Cu(110), a double wetting layer is formed which then acts as a template for the subsequent 3D crystal growth. For both substrates the orientation of the long molecular axes of the 6P molecules in the first layers is conserved for the molecules in the bulk crystals growing on them. The main difference between both systems is that on Cu-O the first monolayer assembles in a form close to that of a 6P bulk plane which can be easily continued by crystallites grown upon them, while on the Cu(110) surface the 6P mono- and bi-layers differ substantially from the bulk structure. The bi-layer forms a complex periodically striped phase. Thin 6P films grow with the 6P(203) crystal plane parallel to the Cu-O substrate surface. For this orientation, the 6P molecules are stacked in layers and the molecules demonstrate only one tilt of the mean molecular plane with respect to the sample surface. On clean Cu(110), a more complex 6P(629) plane is parallel to the substrate surface and this orientation is likely a consequence of the super-molecular long-range periodicity of the second molecular layer striped phase.  相似文献   

10.
Among all organic semiconductors, pentacene has been shown to have the highest thin film mobility reported to date. The crystalline structure of the first few pentacene layers deposited on a dielectric substrate is strongly dependent on the dielectric surface properties, directly affecting the charge mobility of pentacene thin film OTFTs. Herein, we report that there is a direct correlation between the crystalline structure of the initial submonolayer of a pentacene film and the mobility of the corresponding 60-nm-thick films showing terrace-like structure, as confirmed by 2D grazing-incidence X-ray diffraction and atomic force microscopy. Specifically, multilayered pentacene films, grown from single crystal-like faceted islands on HMDS-treated surface, have shown much higher charge mobility (mu = 3.4 +/- 0.5 cm2/Vs) than those with polycrystalline dendritic islands (mu = 0.5 +/- 0.15 cm2/Vs) on OTS-treated ones.  相似文献   

11.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

12.
Evaporated pentacene thin films with thicknesses from several nm to 150 nm on gold and silver substrates have been studied by ultraviolet photoelectron spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). It was found that pentacene thin-film structures, particularly their molecular orientations, are strongly influenced by the metal substrates. UPS measurements revealed a distinct change in the valence band structures of pentacene on Au compared to those on Ag, which is attributed to the different packing between adjacent molecules. Using NEXAFS, we observed 74+/-5 degrees and 46+/-5 degrees molecular tilt angles on Ag and Au, respectively, for all measured thicknesses. We propose that pentacene molecules stand up on the surface and form the "thin-film phase" structure on Ag. On Au, pentacene films grow in domains with molecules either lying flat or standing up on the substrate. Such a mixture of two crystalline phases leads to an average tilt angle of 46 degrees for the whole film and the change in valence band structures. STM and distance-voltage (z-V) spectroscopy studies confirm the existence of two crystalline phases on Au with different conducting properties. z-V spectra on the low conducting phase clearly indicate its nature as "thin-film phase".  相似文献   

13.
Regarding the molecular orientation on flat substrates, thin films have been studied of a series of wedge-shaped molecules (3,4,5-tris-substituted benzoate-benzo crown ether compounds) consisting of a hydrophobic outer rim and a polar group at the thin end which form columnar mesomorphic and crystalline structures. For most substrates studied here, autophobic dewetting is demonstrated to be caused by the formation of a monomolecular adlayer in which the molecules are oriented normal to the substrate surface with the hydrophobic tails directed away from the substrate. For thick films, this adlayer is shown to cause an "in-plane" orientation of the axis of the columnar state. An ordered in-plane oriented adlayer is observed only for highly ordered pyrolytic graphite as the substrate. In this case, specific interactions with the substrate cause formation of a well-ordered 2D pattern that might favor homeotropic orientation of the columnar structures but has to be optimized by further structural variation. The structure of the adsorbed monolayer is elucidated by combining contact angle measurements, plasmon resonance spectroscopy, and optical and scanning tunneling microscopy.  相似文献   

14.
We have developed an orientation control technique for polymer molecules utilizing contact-mode atomic force microscopy (AFM). In this technique, the molecular chains were directly modified by scanning an AFM cantilever tip in contact with the film surface at the temperature just below its melting point. We call this process “modification scan”. Here, we applied this technique to poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) thin films on graphite and glass. We prepared a 75-nm thick copolymer crystalline film on graphite whose lamellar plane was perpendicular to the substrate (edge-on), and also prepared a film of the same thickness on glass whose lamellar plane was parallel to the substrate (flat-on). After applying this technique on both films, molecular chains were stretched and aligned to the modification scan direction, and new edge-on crystals were obtained, whose lamellar planes were well-aligned perpendicular to the modification scan direction.  相似文献   

15.
The growth morphology and mechanism of pentacene films on native Si oxide surface have been studied by using high-resolution electron energy loss spectroscopy (HREELS), X-ray diffraction (XRD), and atomic force microscopy (AFM). Despite the good agreement between our own and the reported XRD results, the previous XRD interpretation that the pentacene molecules are tilt-standing on the substrate cannot explain our HREELS data. The HREELS results show that a substantial portion of the first two layers of pentacene molecules are tilted-standing or randomly oriented, whereas the upper-layer molecules are mostly lying flat to the substrate. AFM reveals that the first two layers of molecules form a flat and smooth surface, but the upper layers show a rough terrace structure with a mean-square roughness equal to the average thickness (without counting the first two layers). This relationship is explained by a theoretical model which assumes the pentacene molecules to remain on a particular molecule layer after arrival. The observed film growth morphology may have significant implication on the performance of electronic devices based on pentacene thin films. A plausible explanation was proposed for the discrepancy between the HREELS-indicated and the XRD-derived molecular orientations.  相似文献   

16.
石墨烯是近年发现的一种新型多功能材料.在合适的衬底上制备石墨烯成为目前材料制备的一大挑战.本文利用分子束外延(MBE)设备,在Si 衬底上生长高质量的SiC 缓冲层,然后利用直接沉积C原子的方法生长石墨烯,并通过反射式高能电子衍射(RHEED)、拉曼(Raman)光谱和近边X 射线吸收精细结构谱(NEXAFS)等实验技术对不同衬底温度(800、900、1000、1100 °C)生长的薄膜进行结构表征.实验结果表明,在以上衬底温度下都能生长出具有乱层堆垛结构的石墨烯薄膜.当衬底温度升高时,碳原子的活性增强,其成键的能力也增大,从而使形成的石墨烯结晶质量提高.衬底温度为1000 °C时结晶质量最好.其原因可能是当衬底温度较低时,碳原子活性太低不足以形成有序的六方C-sp2环.但过高的衬底温度会使SiC 缓冲层的孔洞缺陷增加,衬底的Si 原子有可能获得足够的能量穿过SiC薄膜的孔洞扩散到衬底表面,与沉积的碳原子反应生成无序的SiC,这一方面会减弱石墨烯的生长,另一方面也会使石墨烯的结晶质量变差.  相似文献   

17.
To investigate the effects of the phase state (ordered or disordered) of self-assembled monolayers (SAMs) on the growth mode of pentacene films and the performance of organic thin-film transistors (OTFTs), we deposited pentacene molecules on SAMs of octadecyltrichlorosilane (ODTS) with different alkyl-chain orientations at various substrate temperatures (30, 60, and 90 degrees C). We found that the SAM phase state played an important role in both cases. Pentacene films grown on relatively highly ordered SAMs were found to have a higher crystallinity and a better interconnectivity between the pentacene domains, which directly serves to enhance the field-effect mobility, than those grown on disordered SAMs. Furthermore, the differences in crystallinity and field-effect mobility between pentacene films grown on ordered and disordered substrates increased with increasing substrate temperature. These results can be possibly explained by (1) a quasi-epitaxy growth of the pentacene film on the ordered ODTS monolayer and (2) the temperature-dependent alkyl chain mobility of the ODTS monolayers.  相似文献   

18.
Synchrotron x-ray diffraction reciprocal space mapping was performed on perfluoropentacene (PFP) thin films on SiO2 in order to determine the crystal structure of a novel, substrate-induced thin film phase to be monoclinic with unit cell parameters of a = 15.76 +/- 0.02 A, b = 4.51 +/- 0.02 A, c = 11.48 +/- 0.02 A, and beta = 90.4 +/- 0.1 degrees . Moreover, layered and co-deposited heterostructures of PFP and pentacene (P) were investigated by specular and grazing-incidence x-ray diffraction, atomic force microscopy, and Fourier-transform infrared spectroscopy. For a ca. three-monolayers-thick PFP film grown on a P underlayer, slightly increased lattice spacing was found. In contrast, co-deposited P/PFP films form a new mixed-crystal structure with no detectable degree of phase separation. These results highlight the structural complexity of these technically relevant molecular heterojunctions for use in organic electronics.  相似文献   

19.
We have investigated the crystal growth of the organic semiconductor pentacene by complementing molecular simulations of surface energies with experimental images of pentacene films. Pentacene thin films having variations in thickness and grain size were produced by vacuum sublimation. Large (approximately 20 microm) faceted crystals grew on top of the underlying polycrystalline thin film. The films were characterized using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Single crystals most commonly grew in a truncated diamond shape with the largest crystal face, (001), growing parallel to the substrate. Crystal morphologies and surface energies were calculated using force field-based molecular simulations. The (001) surface was found to have the lowest energy, at 76 mJ/m(2), which was consistent with experimental observations of crystal face size. It was demonstrated that the morphology of the large faceted crystals approached the equilibrium growth shape of pentacene. From contact angle measurements, the critical surface tension of textured pentacene thin films in air was determined to be 34 mJ/m(2).  相似文献   

20.
Recently we have combined infrared spectroscopy and atomic resolution scanning tunneling microscopy (STM) to probe the local structure and intermolecular arrangement of molecules within thin films. IR spectroscopy provides spatially averaged information about orientation of the molecules with respect to the surface and about intermolecular arrangement within the crystallographic unit cell. STM data yields a local picture of molecular packing within the film. The requirements of an atomically flat (over distances of hundreds of angstroms) conducting substrate for the STM are fulfilled by an epitaxially grown film of gold on a cleaved mica substrate which also provides a good infrared reflective surface, enabling IR and STM measurements on identical samples. Systems investigated include Langmuir-Blodgett films of cadmium arachidate and self-assembled films of octadecyltrichlorosilane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号