首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
《先进技术聚合物》2018,29(2):914-920
Doping a low‐bandgap polymer material (PDTBDT‐DTNT) as a complementary electron donor in poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyricacid methyl ester (PC61BM) blend is experimented to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The PCE of OSCs was increased from 3.19% to 3.75% by doping 10 wt% PDTBDT‐DTNT, which was 17.55% higher than that of the OSCs based on binary blend of P3HT:PC61BM (host cells). The short‐circuit current density (Jsc) was increased to 10.11 mA·cm−2 compared with the host cells. Although the PCE improvement could partly be attributed to more photon harvest for complementary absorption of 2 donors by doping appropriate PDTBDT‐DTNT, the promotion of charge separation and transport as well as the suppression of charge recombination due to a matrix of cascade energy levels is also important. And the better morphology of the active layer films is beneficial to the optimized performance of ternary devices.  相似文献   

2.
Organic bulk heterojunction photovoltaics, merely incorporating monoadducts of cyclopenteno[60]fullerenes (CPFs) as n-type materials and P3HT as p-type materials, display superior power conversion efficiency up to 4.6 ± 0.12%, superseding that with PC61BM/P3HT (3.8 ± 0.20%) for ca. 20%, under AM 1.5G irradiation―primarily attributed to the lack of homo-conjugation on CPFs and their higher LUMO energy levels.  相似文献   

3.
Shang  Ao  Luo  Siwei  Zhang  Jianquan  Zhao  Heng  Xia  Xinxin  Pan  Mingao  Li  Chao  Chen  Yuzhong  Yi  Jicheng  Lu  Xinhui  Ma  Wei  Yan  He  Hu  Huawei 《中国科学:化学(英文版)》2022,65(9):1758-1766

Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.

  相似文献   

4.
Journal of Solid State Electrochemistry - The main purpose of this research work is to investigate the effect of nickel as metal dopant on the morphology and photocatalytic activity of TiO2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号