首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A Pd/(R)‐H8‐BINAP‐catalyzed asymmetric benzylic alkylation of active methylene compounds has been developed. The reaction proceeds without the use of an external base, and the starting racemic diarylmethyl carbonates are converted into the optically active coupling products which contain the benzylic chiral stereocenter by a dynamic kinetic asymmetric transformation (DYKAT). Additionally, with suitable carbonates bases, the same palladium catalysis allows the corresponding pivalates to be adopted in the same DYKAT process.  相似文献   

2.
Herein we describe the first organocatalytic asymmetric C(sp2)−H allylation of racemic trisubstituted allenoates with Morita–Baylis–Hillman (MBH) carbonates to access axially chiral tetrasubstituted allenoates. Various trisubstituted allenoates and MBH carbonates were well tolerated under mild reaction conditions, providing novel chiral tetrasubstituted allenoates with adjacent axial chirality and tertiary carbon stereocenters in high yields with good to excellent diastereoselectivities and enantioselectivities.  相似文献   

3.
A single chiral octahedral iridium(III) complex is used for visible light activated asymmetric photoredox catalysis. In the presence of a conventional household lamp and under an atmosphere of air, the oxidative coupling of 2‐acyl‐1‐phenylimidazoles with N,N‐diaryl‐N‐(trimethylsilyl)methylamines provides aminoalkylated products in 61–93 % yields with high enantiomeric excess (90–98 % ee). Notably, the iridium center simultaneously serves three distinct functions: as the exclusive source of chirality, as the catalytically active Lewis acid, and as a central part of the photoredox sensitizer. This conceptionally simple reaction Scheme may provide new avenues for the green synthesis of non‐racemic chiral molecules.  相似文献   

4.
Iridium‐catalyzed enantioselective allylic alkylation of branched racemic carbonates with functionalized alkylzinc bromide reagents is described. Enabled by a chiral Ir/(P,olefin) complex, the method described allows allylic substitution with various primary and secondary alkyl nucleophiles with excellent regio‐ and enantioselectivities. The developed reaction was showcased in a concise, asymmetric synthesis of (?)‐preclamol.  相似文献   

5.
To date, effective nickel-catalyzed enantioselective cross-couplings of alkyl electrophiles that bear oxygen leaving groups have been limited to reactions of allylic alcohol derivatives with Grignard reagents. In this Communication, we establish that, in the presence of a nickel/pybox catalyst, a variety of racemic propargylic carbonates are suitable partners for asymmetric couplings with organozinc reagents. The method is compatible with an array of functional groups and utilizes commercially available catalyst components. The development of a versatile nickel-catalyzed enantioselective cross-coupling process for electrophiles that bear a leaving group other than a halide adds a significant new dimension to the scope of these reactions.  相似文献   

6.
The photoinduced regio‐ and enantioselective coupling of naphthols and derivatives thereof is achieved in the confined chiral coordination space of a RuII metalloligand based cage. The racemic or enantiopure cages encapsulate naphthol guests, which then undergo a regiospecific 1,4‐coupling, rather than the normal 1,1‐coupling, to form 4‐(2‐hydroxy‐1‐naphthyl)‐1,2‐napthoquinones; moderate stereochemical control is achieved with homochiral cages. The photoreactions proceed under both aerobic and anaerobic conditions but through distinct pathways that nevertheless involve the same radical intermediates. This unusual dimerization constitutes a very rare example of asymmetric induction in biaryl coupling by making use of coordination cages with dual functionality—photoredox reactivity and stereoselectivity.  相似文献   

7.
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E- and Z-configured 1,4-dienes has been achieved by visible-light-induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross-electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet-state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.  相似文献   

8.
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E‐ and Z‐configured 1,4‐dienes has been achieved by visible‐light‐induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross‐electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet‐state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.  相似文献   

9.
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light‐induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon‐carbon and carbon‐heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.  相似文献   

10.
An efficient method for the enantioselective construction of tertiary vinylglycols through a palladium‐catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with formaldehyde was developed. By using a palladium complex generated in situ from [Pd2(dba)3]?CHCl3 and a phosphoramidite ligand as a catalyst under mild reaction conditions, the process allows conversion of racemic 4‐substituted 4‐vinyl‐1,3‐dioxolan‐2‐ones into the corresponding 1,3‐dioxolanes, as methylene acetal protected tertiary vinylglycols, in high yields with good to excellent enantioselectivities.  相似文献   

11.
The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides enabled by photoredox and nickel dual catalysis. This dual catalytic transformation features a broad substrate scope and good functional group tolerance at room temperature, providing facile access to a wide array of enantioenriched β-aryl ketones bearing a primary alcohol moiety in good yields with satisfactory enantioselectivities (39 examples, up to 83% yield and 90% ee). The synthetic value of this protocol was illustrated by the concise asymmetric construction of natural product calyxolane B analogues.

An asymmetric β-arylation of cyclopropanols with aryl bromides was enabled by enantioselective photoredox and nickel dual catalysis.  相似文献   

12.
We describe the highly selective palladium catalyzed kinetic resolutions of the racemic cyclic allylic carbonates rac-1 a-c and racemic acyclic allylic carbonates rac-3 aa and rac-3 ba through reaction with tert-butylsulfinate, tolylsulfinate, phenylsulfinate anions and 2-pyrimidinethiol by using N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)-benzamide] (BPA) as ligand. Selectivities are expressed in yields and ee values of recovered substrate and product and in selectivity factors S. The reaction of the cyclohexenyl carbonate 1 a (>/=99 % ee) with 2-pyrimidinethiol in the presence of BPA was shown to exhibit, under the conditions used, an overall pseudo-zero order kinetics in regard to the allylic substrate. Also described are the highly selective palladium catalyzed asymmetric syntheses of the cyclic and acyclic allylic tert-butylsulfones 2 aa, 2 b, 2 c, 2 d and 4 a-c, respectively, and of the cyclic and acyclic allylic 2-pyrimidyl-, 2-pyridyl-, and 4-chlorophenylsulfides 5 aa, 5 b, 5 ab, 6 aa-ac, 6 ba and 6 bb, respectively, from the corresponding racemic carbonates and sulfinate anions and thiols, respectively, in the presence of BPA. Synthesis of the E-configured allylic sulfides 6 aa, 6 ab, 6 ac and 6 bb was accompanied by the formation of minor amounts of the corresponding Z isomers. The analogous synthesis of allylic tert-butylsulfides from allylic carbonates and tert-butylthiol by using BPA could not be achieved. Reaction of the cyclopentenyl esters rac-1 da and rac-1 db with 2-pyrimidinethiol gave the allylic sulfide 5 c having only a low ee value. Similar results were obtained in the case of the reaction of the cyclohexenyl carbonate rac-1 a and of the acyclic carbonates rac-3 aa and rac-3 ba with 2-pyridinethiol and lead to the formation of the sulfides 5 ab, 6 ab, and 6 bb, respectively. The low ee values may be ascribed to the operating of a "memory effect", that is, both enantiomers of the substrate give the substitution product with different enantioselectivities. However, in the reaction of the racemic carbonate rac-1 a as well as of the highly enriched enantiomers 1 a (>/=99 % ee) and ent-1 a (>/=99 % ee) with 2-pyrimidinethiol the ee values of the substrates and the substitution product remained constant until complete conversion. Similar results were obtained in the reaction of the cyclic carbonates rac-1 a, ent-1 a (>/=99 % ee) and ent-1 c (>/=99 % ee) with lithium tert-butylsulfinate. Thus, in the case of rac-1 a and 2-pyrimidinthiol and tert-butylsulfinate anion as nucleophiles the enantioselectivity of the substitution step is, under the conditions used, independent of the chirality of the substrate; this shows that no "memory effect" is operating in this case. Hydrolysis of the carbonates ent-1 a-c, ent-3 aa and ent-3 ba, which were obtained through kinetic resolution, afforded the enantiomerically highly enriched cyclic allylic alcohols 9 a-c (>/=99 % ee) and acyclic allylic alcohols 10 a (>/=99 % ee) and 10 b (99 % ee), respectively.  相似文献   

13.
Transition metal catalysis is one of the most important tools to construct carbon-carbon and carbon-heteroatom bonds in modern organic synthesis. Visible-light photoredox catalysis has recently drawn considerable attention of the scientific community owing to its unique activation modes and significance for the green synthesis. The merger of photoredox catalysis with transition metal catalysts, termed metallaphotoredox catalysis, has become a popular strategy for expanding the synthetic utility of visiblelight photocatalysis. This strategy has led to the discovery of novel asymmetric transformations, which are unfeasible or not easily accessible by a single catalytic system. This contemporary area of organic chemistry holds promise for the development of economical and environmentally friendly methods for the asymmetric synthesis of chiral compounds. In this review, the advances in the enantioselective metallaphotoredox catalysis(EMPC) are summarized.  相似文献   

14.
The palladium-catalyzed deracemization of racemic cyclic and acyclic allylic methyl carbonates in water in the presence of N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphophino)benzamide] proceeds with high enantioselectivities to give the corresponding allylic alcohols in high yields. This deracemization involves a palladium-catalyzed allylic substitution with the in-situ-formed hydrogen carbonate ion and an irreversible decomposition of the intermediate allylic hydrogen carbonates, with formation of the corresponding allylic alcohols. The palladium-catalyzed reaction of racemic cyclic allylic acetates with potassium hydrogen carbonate in water in the presence of the chiral bisphosphane proceeds with a highly selective kinetic resolution to give the corresponding allylic alcohols and allylic acetates.  相似文献   

15.
The first highly efficient and practical chiral Brønsted acid catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes and asymmetric hydroamination of unactivated dienes with both high E/Z selectivity and enantioselectivity are described herein. The transformation proceeds through a new catalytic asymmetric model involving a highly reactive π‐allylic carbocationic intermediate, generated from racemic allenes or dienes through a proton transfer mediated by an activating/directing thiourea group. This method affords expedient access to structurally diverse enantioenriched, potentially bioactive alkenyl‐containing aza‐heterocycles and bicyclic aza‐heterocycles.  相似文献   

16.
A unique nickel/organic photoredox co-catalyzed asymmetric reductive cross-coupling between α-chloro esters and aryl iodides is developed. This cross-electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross-coupling reactions use stoichiometric metals. A diverse array of valuable α-aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α-Aryl esters represent an important family of nonsteroidal anti-inflammatory drugs. This novel synergistic strategy expands the scope of Ni-catalyzed reductive asymmetric cross-coupling reactions.  相似文献   

17.
催化不对称反应新进展—不对称活化   总被引:5,自引:0,他引:5  
介绍了催化不对称催化反应中的一个新概念一不对称活化(asymmetric activation)及其研究的最新进展。运用不对称活化策略,一个光学活性的或者甚至外消旋的催化剂可以被另一种手性活化剂(chiral activator)选择性地活化,从而催化反应生成非外消旋产物。该方法较不对称去活化(asymmetric deactivation)方法的优点是被活化的催化剂能够产生较使用光学纯催化剂更高对映体过量的产物。  相似文献   

18.
本文综述了近年来在无溶剂条件下进行的一些不对称催化反应的进展, 着重介绍了无溶剂条件下的不对称Aldol反应、环氧化合物不对称开环反应、外消旋环氧化合物的拆分、不对称Diels-Alder反应、金属有机试剂对醛酮的不对称加成反应、不对称氢化反应、不对称氢甲酰化反应、不对称烯烃复分解反应、不对称Michael加成反应、不对称氧化反应、不对称Friedel-Crafts反应等, 同时展望了无溶剂不对称催化反应的研究前景。  相似文献   

19.
The reaction of a racemic reagent on a mixture of enantiomers with small ee (ee=enantiomeric excess) has been studied for amine acylation. A substantial asymmetric amplification could be realized, for example, from 67 to >95.5 ee. The combination of asymmetric amplifications is subsequently discussed. Two sequential asymmetric amplifications, one using a racemic reagent and another using a positive nonlinear effect allowed us to start from 1.5 % ee and end with a large amount of a product of 97 % ee.  相似文献   

20.
Kinetic resolution of poly(ethylene glycol)(PEG)-supported carbonates by enzymatic hydrolysis is discussed. Water-soluble carbonates are prepared by immobilization of racemic secondary alcohols onto low-molecular weight monomethoxy PEG (MPEG) through a carbonate linker. Porcine pancreas lipase (PPL) enantioselectively catalyzes the hydrolysis of the substrates to give optically active compounds. In this system, the separation of the resulting alcohols and the remaining substrates is achieved by an extraction process without laborious column chromatography. The carbonates are easily hydrolyzed with K2CO3 to afford the corresponding alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号