首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Nowadays nucleic acid tests are promising to be considered as point-of-care testing(POCT). However, no such devices are currently available that can perform all the functions, including absolute nucleic acid determination, worldwide on-site detection, rapid analysis and real-time results reporting via ubiquitous mobile networks simultaneously with full package and automated means of measurement. In this study, we presented a compact low-cost portable POC automated testing platform with all attributes mentioned above. A disposable self-priming compartmentalization(SPC) microfluidic chip is used to conduct isothermal amplification. The platform also includes a micro-computer controlled heating unit, an inexpensive optical imaging setup, and a mobile device with customized software. It may become a useful tool for the rapid on-site detection of infectious diseases as well as other pathogens.  相似文献   

2.
集成核酸提取的实时荧光PCR微全分析系统将核酸提取、PCR扩增与实时荧光检测进行整合,在同一块微流控芯片上实现了核酸分析过程的全自动和全封闭,具有试剂用量少、分析速度快、操作简便等优点。本研究采用微机械加工技术制作集成核酸提取微流控芯片的阳极模,使用组合模具法和注塑法制作具有3D通道的PDMS基片,与玻璃基底通过等离子体键合封装成集成核酸提取芯片。构建了由微流体速度可调节(0~10 mL/min)的驱动控制装置、温控精度可达0.1℃的TEC温控平台、CCD检测功能模块等组成的微全分析系统。以人类血液裂解液为样品,采用硅胶膜进行芯片上核酸提取。系统根据设置好的时序自动执行,以2 mL/min的流体驱动速度完成20μL裂解液上样、清洗;以1 mL/min的流体驱动速度完成DNA洗脱,抽取PCR试剂与之混合注入到反应腔。提取的基因组DNA以链上内参基因GAPDH为检测对象,并以传统手工提取为对照,在该系统平台上进行PCR扩增和熔解曲线分析实验。片上PCR扩增结果显示,扩增曲线明显,Ct值分别为25.3和26.9。扩增产物进行熔解曲线分析得到的熔解温度一致,均为89.9℃。结果表明,此系统能够自动化、全封闭的在微流控芯片上完成核酸提取、PCR扩增与实时定量分析。  相似文献   

3.
4.
Lien KY  Chuang YH  Hung LY  Hsu KF  Lai WW  Ho CL  Chou CY  Lee GB 《Lab on a chip》2010,10(21):2875-2886
The present study reports a new three-dimensional (3D) microfluidic platform capable of rapid isolation and detection of cancer cells from a large sample volume (e.g. ~1 mL) by utilizing magnetic microbead-based technologies. Several modules, including a 3D microfluidic incubator for the magnetic beads to capture cancer cells, a microfluidic control module for sample transportation and a nucleic acid amplification module for genetic identification, are integrated into this microsystem. With the incorporation of surface-modified magnetic beads, target cancer cells can be specifically recognized and conjugated onto the surface of the antibody-coated magnetic microbeads by utilizing a swirling effect generated by the new 3D microfluidic incubator, followed by isolating and purifying the magnetic complexes via the incorporation of an external magnet and a microfluidic control module, which washes away any unbound waste solution. Experimental results show that over 90% of the target cancer cells can be isolated from a large volume of bio-samples within 10 min in the 3D microfluidic incubator. In addition, the expressed genes associated with ovarian and lung cancer cells can also be successfully amplified by using the on-chip nucleic acid amplification module. More importantly, the detection limit of the developed system is found to be 5 × 10(1) cells mL(-1) for the target cancer cells, indicating that this proposed microfluidic system may be adapted for clinical use for the early detection of cancer cells. Consequently, the proposed 3D microfluidic system incorporated with immunomagnetic beads may provide a promising automated platform for the rapid isolation and detection of cancer cells with a high sensitivity.  相似文献   

5.
《中国化学快报》2023,34(8):108092
Nucleic acid detection (NAD) based on real-time polymerase chain reaction (real-time PCR) is gold standard for infectious disease detection. Magnetic nanoparticles (MNPs) are widely used for nucleic acid extraction (NAE) because of their excellent properties. Microfluidic technology makes automated NAD possible. However, most of the NAD microfluidic chips are too complex to be applied to point-of-care (POC) testing. In this paper, a simple-structure cartridge was developed for POC detection of infectious diseases. This self-contained cartridge can be divided into a magnetic-controlled NAE part, a valve-piston combined fluidic control part and a PCR chip, which is able to extract nucleic acid from up to 500 µL of liquid samples by MNPs and finish the detection process from “sample in” to “answer out” automatically. Performance tests of the cartridges show that it met the demands of automated NAD. Results of on-cartridge detection of hepatitis B virus (HBV) demonstrated that this system has good uniformity and no cross-contamination between different cartridges, and the limit of detection (LOD) of this system for HBV in serum is 50 IU/mL. Multiplex detections of severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) with a concentration of 500 copies/mL were carried out on the system and 100% positive detection rate was achieved.  相似文献   

6.
7.
This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based nucleic acid sensor could discriminate as low as 5 fM (signal-to-noise (S/N) 3) of synthesized carcinoembryonic antigen (CEA) gene fragments and showed a 1000-fold increase in detection limit compared to the off-chip test. In addition, using spiked colorectal cancer cell lines (HT29) in the blood as a model system, the detection limit of this chip-based approach was found to be as low as 1 HT29 in 1 mL blood sample. This microfluidic bead-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence.  相似文献   

8.
9.
In this paper we report a centrifugal microfluidic “lab-on-a-disc” system for at-line monitoring of human immunoglobulin G (hIgG) in a typical bioprocess environment. The novelty of this device is the combination of a heterogeneous sandwich immunoassay on a serial siphon-enabled microfluidic disc with automated sequential reagent delivery and surface-confined supercritical angle fluorescence (SAF)-based detection. The device, which is compact, easy-to-use and inexpensive, enables rapid detection of hIgG from a bioprocess sample. This was achieved with, an injection moulded SAF lens that was functionalized with aminopropyltriethoxysilane (APTES) using plasma enhanced chemical vapour deposition (PECVD) for the immobilization of protein A, and a hybrid integration with a microfluidic disc substrate. Advanced flow control, including the time-sequenced release of on-board liquid reagents, was implemented by serial siphoning with ancillary capillary stops. The concentration of surfactant in each assay reagent was optimized to ensure proper functioning of the siphon-based flow control. The entire automated microfluidic assay process is completed in less than 30 min. The developed prototype system was used to accurately measure industrial bioprocess samples that contained 10 mg mL−1 of hIgG.  相似文献   

10.
Miniaturized isothermal nucleic acid amplification, a review   总被引:1,自引:0,他引:1  
Asiello PJ  Baeumner AJ 《Lab on a chip》2011,11(8):1420-1430
Micro-Total Analysis Systems (μTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.  相似文献   

11.
Min J  Kim JH  Lee Y  Namkoong K  Im HC  Kim HN  Kim HY  Huh N  Kim YR 《Lab on a chip》2011,11(2):259-265
Microfluidic devices for on-chip amplification of DNA from various biological and environmental samples have gained extensive attention over the past decades with many applications including molecular diagnostics of disease, food safety and biological warfare testing. But the integration of sample preparation functions into the chip remains a major hurdle for practical application of the chip-based diagnostic system. We present a PCR-based molecular diagnostic device comprised of a microfabricated chip and a centrifugal force assisted liquid handling tube (CLHT) that is designed to carry out concentration and purification of DNA and subsequent amplification of the target gene in a single chip. The reaction chamber of the chip contains an array of pillar structures to increase the surface area for capturing DNA from a raw sample of macro volume in the presence of kosmotropic agents. The CLHT was designed to provide an effective interface between sample preparation and the microfluidic PCR chip. We have characterized the effect of various fluidic parameters including DNA capture, amplification efficiency and centrifugal pressure generated upon varying sample volume. We also evaluated the performance of this system for quantitative detection of E. coli O157:H7. From the samples containing 10(1) to 10(4) cells per mL, the C(T) value linearly increased from 25.1 to 34.8 with an R(2) value greater than 0.98. With the effectiveness and simplicity of operation, this system will provide an effective interface between macro and micro systems and bridge chip-based molecular diagnosis with practical applications.  相似文献   

12.
Wang CH  Lien KY  Wu JJ  Lee GB 《Lab on a chip》2011,11(8):1521-1531
This study reports a new diagnostic assay for the rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) by combing nucleic acid extraction and isothermal amplification of target nucleic acids in a magnetic bead-based microfluidic system. By using specific probe-conjugated magnetic beads, the target deoxyribonucleic acid (DNA) of the MRSA can be specifically recognized and hybridized onto the surface of the magnetic beads which are then mixed with clinical sample lysates. This is followed by purifying and concentrating the target DNA from the clinical sample lysates by applying a magnetic field. Nucleic acid amplification of the target genes can then be performed by the use of a loop-mediated isothermal amplification (LAMP) process via the incorporation of a built-in micro temperature control module, followed by analyzing the optical density (OD) of the LAMP amplicons using a spectrophotometer. Significantly, experimental results show that the limit of detection (LOD) for MRSA in the clinical samples is approximately 10 fg μL(-1) by performing this diagnostic assay in the magnetic bead-based microfluidic system. In addition, the entire diagnostic protocol, from bio-sample pre-treatment to optical detection, can be automatically completed within 60 min. Consequently, this miniature diagnostic assay may become a powerful tool for the rapid purification and detection of MRSA and a potential point-of-care platform for detection of other types of infections.  相似文献   

13.
A multi-analyte biosensor based on nucleic acid hybridization and liposome signal amplification was developed for the rapid serotype-specific detection of Dengue virus. After RNA amplification, detection of Dengue virus specific serotypes can be accomplished using a single analysis within 25 min. The multi-analyte biosensor is based on single-analyte assays (see Baeumner et al (2002) Anal Chem 74:1442–1448) developed earlier in which four analyses were required for specific serotype identification of Dengue virus samples. The multi-analyte biosensor employs generic and serotype-specific DNA probes, which hybridize with Dengue RNA that is amplified by the isothermal nucleic acid sequence based amplification (NASBA) reaction. The generic probe (reporter probe) is coupled to dye-entrapping liposomes and can hybridize to all four Dengue serotypes, while the serotype-specific probes (capture probes) are immobilized through biotin–streptavidin interaction on the surface of a polyethersulfone membrane strip in separate locations. A mixture of amplified Dengue virus RNA sequences and liposomes is applied to the membrane and allowed to migrate up along the test strip. After the liposome-target sequence complexes hybridize to the specific probes immobilized in the capture zones of the membrane strip, the Dengue serotype present in the sample can be determined. The amount of liposomes immobilized in the various capture zones directly correlates to the amount of viral RNA in the sample and can be quantified by a portable reflectometer. The specific arrangement of the capture zones and the use of unlabeled oligonucleotides (cold probes) enabled us to dramatically reduce the cross-reactivity of Dengue virus serotypes. Therefore, a single biosensor can be used to detect the exact Dengue serotype present in the sample. In addition, the biosensor can simultaneously detect two serotypes and so it is useful for the identification of possible concurrent infections found in clinical samples. The various biosensor components have been optimized with respect to specificity and sensitivity, and the system has been ultimately tested using blind coded samples. The biosensor demonstrated 92% reliability in Dengue serotype determination. Following isothermal amplification of the target sequences, the biosensor had a detection limit of 50 RNA molecules for serotype 2, 500 RNA molecules for serotypes 3 and 4, and 50,000 molecules for serotype 1. The multi-analyte biosensor is portable, inexpensive, and very easy to use and represents an alternative to current detection methods coupled with nucleic acid amplification reactions such as electrochemiluminescence, or those based on more expensive and time consuming methods such as ELISA or tissue culture.  相似文献   

14.
Dineva MA  MahiLum-Tapay L  Lee H 《The Analyst》2007,132(12):1193-1199
Currently available nucleic acid testing (NAT)-based assays are complex and time-consuming, and they require expensive instrumentation and dedicated laboratory spaces for sample preparation as well as for amplification and detection of the nucleic acid target. Reagents required for these tests are also expensive and must be transported and stored refrigerated or frozen. These characteristics have limited the use of such assays for point-of-care (POC) testing, especially in resource-poor settings. Efforts to develop simple and rapid NAT-based assays have focused predominantly on the amplification and detection steps, with sample preparation and nucleic acid extraction remaining the bottleneck in the development of NAT systems suitable for POC applications or resource-limited settings. A review of NAT platforms and technologies currently under development and validation for rapid field testing revealed that, in addition to requiring expensive and complex instrumentation, many of these systems also require off-line sample preparation and reagent handling. In their current format, they are therefore not appropriate for POC testing in resource-limited settings. We evaluated several commercially available technologies and procedures for the isolation of nucleic acid with the extraction of HIV-1 RNA from human plasma as a model system. Our results indicate that solid-phase extraction with silica or glass in the presence of a chaotropic salt provides the highest extraction efficiency. However, none of the existing methods and technologies is readily adaptable to a POC system. The integration of sample preparation procedures well suited to NAT-based assays in resource-limited settings therefore remains a challenge.  相似文献   

15.
Highly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets. The digital multiplexed LAMP assay is thus developed by implementing the LAMP reaction using a droplet microfluidic chip coupled to a droplet counting microwell chip. The droplet counting system allows rapid and accurate counting of the numbers of total droplets and the positive droplets by collecting multi-color fluorescence images of the droplets in a microwell. The multiplexed dLAMP assay was successfully demonstrated for the quantification of HCV and HIV cDNA with high precision and detection limits as low as 4 copies per reaction. We also verified its potential for simultaneous digital assay of HCV and HIV RNA in clinical plasma samples. This multiplexed dLAMP technique can afford a useful platform for highly sensitive and specific detection of nucleic acids of viruses and other pathogens, enabling rapid diagnosis and prevention of infectious diseases.

The development of multiplexed dLAMP with scorpion-shaped probes and fluorescence microscopic counting affords simultaneous digital quantification of multiple virus RNAs.  相似文献   

16.
17.
Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.  相似文献   

18.
A novel active valving technique, whereby paraffin wax plugs in microchannels on a centrifugal microfluidic platform are actuated using focused infrared (IR) radiation is demonstrated in this report. Microchannels were simultaneously or sequentially opened using a stationary IR source by forming wax plugs with similar or differing melting points. The presented wax plugs offer key advantages over current active valving techniques, including a less involved fabrication procedure, a simpler actuation process, and the ability to multiplex experiment with active valves. In addition, a new technique for automated liquid reagent storage and release on the microfluidic disc platform, based on the formation and removal of a wax layer, is demonstrated. Overall, the techniques presented in this report offer novel methods for liquid handling, separation, and storage on the centrifugal microfluidic disc platform.  相似文献   

19.
The mechanism of bacteriophage photoinactivation by methylene blue and light (MB+L) involves genomic RNA damage. In this study, two RNA viruses, Sindbis virus (SINV) and hepatitis C virus were treated by MB+L and their nucleic acids were amplified to show that RNA lesions occurred during inactivation. During MB+L inactivation, the viral load of both viruses was significantly reduced as MB+L exposure increased. The nucleic acid amplification of treated viral RNA was inhibited in a time-dependent manner and the percentage inhibition of amplification reached about 99% after 30 min of treatment. Furthermore, as compared to SINV viral infectivity detected by quantification of the 50% tissue culture infective dose (TCID(50)), the inhibition of SINV RNA amplification strongly correlated with a decrease in in vitro infectivity (R(2) > 0.94), suggesting that RNA serves as the main target during MB+L inactivation.  相似文献   

20.
Krejcova  Ludmila  Nguyen  Hoai Viet  Hynek  David  Guran  Roman  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1425-1432

Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号