首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-cell analysis is important for understanding fundamental biological processes and mechanisms. Scanning electrochemical microscopy and scanning ion conductance microscopy as two kinds of scanning probe microscopy, with high temporal and spatial resolutions as well as in situ and noninvasive characterization capabilities, emerge as strong tools for single-cell analysis. In this review, we introduce the latest advances of scanning electrochemical microscopy and scanning ion conductance microscopy for single-cell analysis, including characterizations of cell morphology dynamics, membrane properties and mechanics, and monitoring cell surface charge, extracellular pH, and intracellular substances.  相似文献   

2.
We present the first direct comparison of scanning ion conductance microscopy (SICM) with atomic force microscopy (AFM) for cell imaging. By imaging the same fibroblast or myoblast cell with both technologies in series, we highlight their advantages and disadvantages with respect to cell imaging. The finite imaging force applied to the sample in AFM imaging results in a coupling of mechanical sample properties into the measured sample topography. For soft samples such as cells this leads to artifacts in the measured topography and to elastic deformation, which we demonstrate by imaging whole fixed cells and cell extensions at high resolution. SICM imaging, on the other hand, has a noncontact character and can provide the true topography of soft samples at a comparable resolution.  相似文献   

3.
We propose a modification of a scanning ion conductance microscope suitable for probing an electrode in an operating electrochemical cell. We demonstrate its use by measuring salt concentration variations near a conducting polymer electrode as the polymer is electrochemically oxidized and reduced. The electrochemical control circuit is opened to isolate the working electrode, at a frequency sufficiently high that the electrode capacitance maintains the electrode potential. The local solution conductivity variations are detected through the probe current during the open-circuit time. We demonstrate two-stage ion exchange during oxidation and reduction of poly(3,4-ethylenedioxythiophene) films that develops strongly with repeated cycling and is correlated with actuation changes. Spatial composition variations of the film, caused by redox current distribution over the surface, and electromigration to the probe tip, causing local solution composition changes, have clear and characteristic effects on the measured transients.  相似文献   

4.
5.
The latest contributions of scanning ion conductance microscopy (SICM) to current research in life sciences are reviewed. The continued efforts toward technical improvements in SICM hardware and software resulted in development of new scanning strategies and instrumental designs. Enhanced high-speed mapping supported the capture of very fast cellular processes at the nanoscale, such as secretory events or cilia movements or the contraction cycle of a cardiomyocyte. The noninvasive scanning capability allowed researchers to monitor the response of individual live cells to chemical stimulations in real time. Access to new kinds of information that can be extracted from experimental data with the support of numerical simulations was demonstrated, thus extending further SICM multifunction capability.  相似文献   

6.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

7.
<正>Comparison in electron transfer(ET) processes from decamethyferrocene(DMFe) in nitrobenzene(NB) to ferric ion in aqueous phase was investigated for the first time by the scanning electrochemical microscopy(SECM).As compared with the system of Fe(CN)_6~(3-)-DMFe,the ET rate obtained from Fe~(3+)-DMFe was lower in spite of larger driving force,which may arise from the effect of reorganization energy.Otherwise,the effect of common ion on rate constants was also probed and results suggested additional complexity of the ET mechanism between Fe(CN)_6~(3-) and DMFe.  相似文献   

8.
Chen CC  Baker LA 《The Analyst》2011,136(1):90-97
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.  相似文献   

9.
10.
Infrared-visible sum frequency generation spectroscopy (SFG) has been used to study the interface between poly(vinyl-N-octadecylcarbamate-co-vinyl acetate) (Comb) and deuterated or hydrogenated polystyrene (dPS or hPS) films. Strong methyl symmetric and Fermi resonance bands associated with the alkyl side chains of the Comb polymer are observed in the SFG spectra. In addition, for Comb/hPS spectra, symmetric and asymmetric vibration modes of phenyl groups are observed. The presence of asymmetric modes indicates the phenyl rings are tilted with respect to the interface normal.  相似文献   

11.
Morris CA  Chen CC  Baker LA 《The Analyst》2012,137(13):2933-2938
We report scanning electrochemical microscopy-scanning ion conductance microscopy (SECM-SICM) experiments that describe transport of redox active molecules which emanate from single pores of a track-etch membrane. Experiments are performed with electrodes which consist of a thin gold layer deposited on one side of a nanopipet. Subsequent insulation of the electrode with parylene results in a hybrid electrode for SECM-SICM measurements. Electrode fabrication is straightforward and highly parallel. For image collection, ionic current measured at the nanopipet both controls the position of the electrode with respect to the membrane surface and reports the local conductance in the vicinity of the nanopipet, while faradaic current measured at the Au electrode reports the presence of redox-active molecules. Application of a transmembrane potential difference affords additional control over migration of charged species across the membrane.  相似文献   

12.
Ion beam analysis (IBA) techniques were applied successfully to the investigation of non‐corroded and artificially corroded patina layers grown on copper substrates in order to explore their potential use in the study of degradation phenomena of copper and copper alloys subjected to chemical treatment and exposed to selected environmental conditions. Rutherford backscattering spectroscopy (RBS) with deuterons as projectiles and the nuclear reactions 16O(d,p)17O and 32S(p,p′γ)32S were applied to the investigation of the depth distribution of oxygen and sulphur in near‐surface layers of synthetic patina consisting of mineral phases corresponding to chalcanthite as well as to cuprite + chalcanthite and antlerite + brochantite + chalcanthite. Electrochemical techniques (potentiodynamic polarization and cyclic voltammetry in 0.5 M Na2SO4) were used for artificial acceleration and study of the corrosion processes, and scanning electron microscopy (SEM/EDS) was used for examination of the surface morphology of the samples. A patinated roof sample from the Vienna Hofburg also was investigated using the same techniques. The measurement showed that IBA can provide valuable information for the study of patina near‐surface layers of thickness up to a few micrometres and indicated that cuprite was the mineral phase primarily formed on the copper substrates and the main component of the interface between the patina layer and the metallic substrate. The investigated copper patinas looked rather heterogeneous and were characterized by high porosity. Mixed patinas exhibited considerable stability to further corrosive attack. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Presence of inhomogeneous layered structures of ionic liquid (IL) molecules at IL/HOPG and IL/mica interfaces was directly detected and imaged by using frequency-modulation atomic force microscopy. High stability of the layered structures may disturb their interface applications to catalysis and electrochemistry.  相似文献   

14.
Experimental data and theoretical notions are presented for 6-[1'-(6-mercapto-hexyl)-[4,4']bipyridinium]-hexane-1-thiol iodide (6V6) "wired" between a gold electrode surface and tip in an in situ scanning tunneling microscopy configuration. The viologen group can be used to "gate" charge transport across the molecular bridge through control of the electrochemical potential and consequently the redox state of the viologen moiety. This gating is theoretically considered within the framework of superexchange and coherent two-step notions for charge transport. It is shown here that the absence of a maximum in the Itunneling versus electrode potential relationship can be fitted by a "soft" gating concept. This arises from large configurational fluctuations of the molecular bridge linked to the gold contacts by flexible chains. This view is incorporated in a formalism that is well-suited for data analysis and reproduces in all important respects the 6V6 data for physically sound values of the appropriate parameters. This study demonstrates that fluctuations of isolated configurationally "soft" molecules can dominate charge transport patterns and that theoretical frameworks for compact monolayers may not be directly applied under such circumstances.  相似文献   

15.
The development of scanning force microscopes that maintain precise control of the tip position using displacement control (DC-SFM) has allowed significant progress in understanding the relationships between the chemical and mechanical properties of soft interfaces. Here, developments in DC-SFM techniques and their applications are reviewed. Examples of material systems that have been investigated are discussed and compared to measurements with other techniques involving nanoprobe geometries to illustrate the achievements and promise in this area. Specifically discussed are applications to soft interfaces, including SAMs, lipid bilayers, confined fluids, polymer surfaces, ligand–receptor bonds, and soft metallic films.  相似文献   

16.
We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.  相似文献   

17.
A goal across multiple scientific fields (e.g. separations, polymer processing, and biomaterials) is to understand polymer dynamics at solid/liquid interfaces. In the last two decades, rapid developments in single-molecule techniques have revolutionized our ability to directly observe molecular behaviors with ultra-high spatial/temporal resolution and to decouple the elementary processes that were often veiled in ensemble experiments. This review provided an overview of principle and realization of two single-molecule fluorescence techniques that were often used to study the interfacial dynamics. In addition, this review updated recent progress in the discovery and understanding of dynamical anomalies of polymers at solid/liquid interfaces using these single-molecule techniques, emphasizing important elementary processes of diffusion, adsorption, and desorption.  相似文献   

18.
19.
Theprocessofmembraneinsertionofthetoxicproteincanbedividedintotwosteps:absorptionandinsertion.Theproteinmoleculesfirstinteractwiththemembranesurfaceandbecomeadsorbedontothemembranethroughstaticelectricity.Theconformationofthetoxicproteinwillchangeunde…  相似文献   

20.
Conductance was measured for the single molecules with S/Se anchoring on a Au surface using the point contact method with scanning tunneling microscopy that enables us to selectively perform a repeated analysis of a chosen target molecule. Apparent conductance changes observed in sequential measurements suggest the existence of bond fluctuation among the adsorption sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号