首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》1997,23(2):193-203
In this paper the director configurations and the free energies of a nematic droplet with a surface normal anchoring condition are calculated numerically. For this surface anchoring, a transition occurs between the radial and axial structures with respect to an applied field. In the calculation of the director configurations, the position of a disclination has been fixed. Comparing the free energies for different disclinations, the stable position which gives the minimum free energy is found. In calculating the free energy of a droplet, it is assumed that the free energy density of the nematic phase does not exceed the isotropic free energy density, so that the large distortion in the vicinity of the disclination causes a nematic-isotropic transition and the free energy density of the disclination core becomes equal to the isotropic free energy density. The director configuration in a droplet is calculated as a function of an applied field for different isotropic free energy densities, elastic constant ratios and droplet shapes. The relation between the radial-axial structure transition and these factors are clarified.  相似文献   

2.
Polymer films containing droplets of nematic liquid crystal form an important class of new electro-optic light valves and displays. While previous work has shown that the nematic droplet size is an important factor in the electro-optic properties of these films, here we report that the droplet shape is equally important in determing the electro-optics of the film. Electron micrographs show that for films using polyvinyl alcohol as the polymeric binder the cavities formed by the polymer matrix are oblate in nature, and aligned with the minor axis perpendicular to the film plane. In oblate cavities the elastic-deformation free energy is minimized when the director field in the droplet is aligned along a major axis of the spheroid; the electric field performs work on the nematic in reorienting the nematic into a higher-energy state, equal to the elastic-free-energy difference between the two configurations. Calculations and experiment are used to estimate the elastic and electric field free-energy-density changes that occur upon reorientation of the nematic droplet. The general agreement between these two values is used to indicate that droplet shape anisotropy is a major factor in determining the electrooptic properties of these films.  相似文献   

3.
Polymer films containing droplets of nematic liquid crystal form an important class of new electro-optic light valves and displays. While previous work has shown that the nematic droplet size is an important factor in the electro-optic properties of these films, here we report that the droplet shape is equally important in determing the electro-optics of the film. Electron micrographs show that for films using polyvinyl alcohol as the polymeric binder the cavities formed by the polymer matrix are oblate in nature, and aligned with the minor axis perpendicular to the film plane. In oblate cavities the elastic-deformation free energy is minimized when the director field in the droplet is aligned along a major axis of the spheroid; the electric field performs work on the nematic in reorienting the nematic into a higher-energy state, equal to the elastic-free-energy difference between the two configurations. Calculations and experiment are used to estimate the elastic and electric field free-energy-density changes that occur upon reorientation of the nematic droplet. The general agreement between these two values is used to indicate that droplet shape anisotropy is a major factor in determining the electrooptic properties of these films.  相似文献   

4.
T. Onozawa 《Liquid crystals》1994,17(5):635-649
Starting from the Landau-de Gennes free energy expression, the author has numerically analysed the director pattern in a nematic droplet of polymer dispersed liquid crystals. The nematic director has been understood as the eigenvector, which corresponds to the largest eigenvalue of the tensor order parameter. To investigate the droplet structure influence, all equations have been treated on the curvilinear coordinate system which is generated along the droplet boundary. In the case of spherical and spheroidal droplets with normal strong anchoring, the director exhibits an axial configuration and a disclination ring. The ring radius and the capactiance of the system change without hysteresis with the applied voltage.  相似文献   

5.
When a small droplet of a nematic liquid crystal is placed on a horizontal glass plate in the presence of a magnetic field, the plane of polarization of light transmitted upward through the liquid crystal can be rotated. A defect usually forms preferring a direction perpendicular to the magnetic field and forming a diagonal of the droplet. This defect divides the free surface into regions giving rise to optical rotations that are clockwise and counterclockwise. It is suggested that the defect may be similar to a Helfrich splay-bend wall and the optical rotation in the regions near the defect may be explained by surface effects at the free surface of a liquid crystal.  相似文献   

6.
Abstract

The spatial dependence of the orientation of the molecular director and of the nematic order parameter is obtained by minimization of the Landau–de Gennes free energy of the nematic liquid crystal confined in a spherical droplet. Special attention is given to the vicinity of the nematic–isotropic transition. The influence of the resulting nematic structure, large liquid crystal–polymer interface and restricted molecular diffusion on the nuclear magnetic relaxation is analysed. The translationally-induced molecular reorientation and the liquid crystal–polymer cross relaxation are discussed in particular. The possibility of an indirect study of the molecular anchoring on the polymer surface is demonstrated.  相似文献   

7.
Molecular dynamics simulations for 4-n-pentyl-4′-cyanobiphenyl (5CB) with as many as 944 molecules are reported. The order-N fast multipole method (FMM) is used to treat the long-range interactions. For a droplet of 944 molecules, the simulation shows a correlation between the droplet shape and the nematic order and a strong surface effect; little nematic order is found in a 118 molecule droplet. Simulations of the bulk system result in similar order parameters for both the 118 and 944 molecular ensembles. Although the nematic–isotropic transition was not observed at temperatures as high as 400 K using the CHARMM force field, a modification of the force field using ab initio determined partial atomic charges lowers the order parameters.  相似文献   

8.
The basic mechanisms determining the formation of optical anisotropy in stretched, thin polymer dispersed liquid crystal (PDLC) films with micron sized nematic droplets have been studied experimentally and the results analysed in terms of a proposed theoretical model. The experiments were performed on PDLC films with the bipolar nematic director configuration in the droplets, where the film transmittance, microscopic structure, and birefringence of the polymer matrix were studied. It is shown that the orientational ordering of bipolar nematic droplets, introducing the main contribution to the ability of stretched PDLC film to polarize the transmitted light, is strongly dependent upon initial droplet shape and the elastic properties of the polymer matrix. The 'anomalous' nematic director orientation is also observed in a portion of elongated droplets where the axes of bipolar configurations do not coincide with the major axes of the droplet cavities due to the presence of inclusions at the cavity walls. The effect of alternation of droplet size and shape upon stretching and the influence of optical anisotropy of the polymer matrix on film transmittance are analysed. On the basis of the results obtained, simple criteria for optimization of main PDLC polarizer performance are formulated.  相似文献   

9.
Polarizing microscopy was used to study the kinetics of formation and droplet size growth of the ordered (nematic) phase during the phase separation of an azomethine dimer melt at various rates of cooling. The statistical droplet size distribution of the nematic phase during phase separation was described by a model derived in terms of the thermodynamics of irreversible processes. Two kinetic phase separation stages were observed and described by the universal scaling function.  相似文献   

10.
11.
This paper presents a computational study of defect nucleation associated with the kinetics of the isotropic‐to‐nematic phase ordering transition over heterogeneous substrates, as it occurs in new liquid crystal biosensor devices, based on the Landau–de Gennes model for rod‐like thermotropic nematic liquid crystals. Two regimes are identified due to interfacial tension inequalities: (i) nematic surface film nucleation and growth normal to the heterogeneous substrate, and (ii) nematic surface droplet nucleation and growth. The former, known as wetting regime, leads to interfacial defect shedding at the moving nematic‐isotropic interface. The latter droplet regime, involves a moving contact line, and exhibits two texturing mechanisms that also lead to interfacial defect shedding: (a) small and large contact angles of drops spreading over a heterogeneous substrate, and (b) small drops with large curvature growing over homogeneous patches of the substrate. The numerical results are consistent with qualitative defect nucleation models based on the kinematics of the isotropic–nematic interface and the substrate–nematic–isotropic contact line. The results extend current understanding of phase ordering over heterogeneous substrates by elucidating generic defect nucleation processes at moving interfaces and moving contact lines.  相似文献   

12.
《Liquid crystals》2000,27(8):1029-1033
We have investigated the electro-optical performance of switchable nematic emulsions as a function of temperature. The electro-optical properties of nematic emulsions are highly dependent on temperature because several parameters such as droplet size, number density, viscosity, surface free energy, elastic constant, refractive indices, dielectric anisotropy, and liquid crystal/monomer solubility are affected by temperature. In particular, both ON state transmittances and decay times show a decreasing behaviour with increasing temperature. On the contrary, the OFF state transmittances increase, and the rise times do not change in an appreciable way.  相似文献   

13.
We have investigated the electro-optical performance of switchable nematic emulsions as a function of temperature. The electro-optical properties of nematic emulsions are highly dependent on temperature because several parameters such as droplet size, number density, viscosity, surface free energy, elastic constant, refractive indices, dielectric anisotropy, and liquid crystal/monomer solubility are affected by temperature. In particular, both ON state transmittances and decay times show a decreasing behaviour with increasing temperature. On the contrary, the OFF state transmittances increase, and the rise times do not change in an appreciable way.  相似文献   

14.
The dependence of the proton N.M.R. absorption spectrum on nematic director configuration and molecular self-diffusion in nematic submicrondroplets is analysed. The lineshape is evaluated numerically for radial and bipolar director configuration. The motional averaging is taken into account by means of a numerical simulation of the molecular diffusion which induces slow molecular reorientations due to non-uniform orientational ordering in the droplet. This diffusion process strongly affects the absorption spectra of the radial configuration, whereas spectra of the bipolar configuration are only slightly influenced. The possibility of determinating the submicrometre nematic droplet structures using the proton N.M.R. lineshape is discussed.  相似文献   

15.
S. Kralj  M. Vilfan  S.   Kumer 《Liquid crystals》1989,5(5):1489-1495
The dependence of the proton N.M.R. absorption spectrum on nematic director configuration and molecular self-diffusion in nematic submicrondroplets is analysed. The lineshape is evaluated numerically for radial and bipolar director configuration. The motional averaging is taken into account by means of a numerical simulation of the molecular diffusion which induces slow molecular reorientations due to non-uniform orientational ordering in the droplet. This diffusion process strongly affects the absorption spectra of the radial configuration, whereas spectra of the bipolar configuration are only slightly influenced. The possibility of determinating the submicrometre nematic droplet structures using the proton N.M.R. lineshape is discussed.  相似文献   

16.
In this paper, we focus on the isotropic-to-nematic phase transition in a liquid-crystal droplet. We present the results of an experiment to measure the growth of the nematic phase within an isotropic phase liquid-crystal droplet. Experimentally, we observe two primary phase transition regimes. At short time scales, our experimental results (R(t) approximately t0.51) show good agreement with a Stefan-type model of the evolution of the nematic phase within the isotropic phase of a liquid crystal. As time progresses, the growth of the nematic phase is restricted by increased confinement of the droplet boundary. During this stage of growth, the nematic phase grows at a slower rate of R(t) approximately t0.31. The slower growth at later stages might be due to a variety of factors such as confinement-induced latent heat reduction; a change of defect strength during its evolution; or interactions between the defect and the interface between the liquid crystal and oil or between adjacent defects. The presence of two growth regimes is also consistent with the molecular simulations of Bradac et al. (Bradac, Z.; Kralj, S.; Zumer, S. Phys. Rev. E 2002, 65, 021705) who identify an early stage domain regime and a late stage confinement regime. For the domain and confinement regimes, Bradac et al. (Bradac, Z.; Kralj, S.; Zumer, S. Phys. Rev. E 2002, 65, 021705) obtained growth exponents of 0.49 +/- 0.05 and 0.25 +/- 0.05. These are remarkably close to the values 0.51 and 0.31 observed in our experiments.  相似文献   

17.
The principle of magnetic levitation is demonstrated using a large magnetic field gradient to elevate a polycrystalline sample of dodecyloxycyanobiphenyl against gravity. Additionally, a nematic droplet of pentylcyanobiphenyl clinging to a vertically oriented wire is elevated against gravity. The contact angle and length of the droplet are extracted from the droplet shape in the context of a gravitation-free model.  相似文献   

18.
S.   umer  S. Kralj 《Liquid crystals》1992,12(4):613-624
A phenomenological free energy is used to describe the stable ordering of nematic liquid crystals confined to supramicron spherical cavities. In particular the effects of the saddle splay elastic constant, K24, on the equilibrium structures and phase diagram of droplets with homeotropic surface anchoring are discussed. Some structures are illustrated by the corresponding simulated polarization microscope textures. Possibilities for an experimental determination of the saddle-splay elastic constant and surface anchoring strength by studying the radial-axial structural transition in such droplets are analysed. It is shown that the K24 term in the elastic free energy stabilizes a deformed droplet structure even in the limit of the zero anchoring strength.  相似文献   

19.
S. Kralj  S.   umer 《Liquid crystals》1993,15(4):521-527
Different nematic structures confined to a long cylindrical cavity with homeotropic surface anchoring are studied using a numerical minimization of the free energy of the uniaxial nematic liquid crystal. The stability of escaped radial structures and planar polar structures (with and without line defects) is analysed in terms of the ratio of elastic constants K24/K11, K33/K11, anchoring strength and external magnetic field applied perpendicular to the symmetry axis of the cylinder. We draw the analogy between the stability diagram of the cylindrical structures and structures in a spherical droplet. In particular, a simple way extracting the value of the saddle-splay elastic constant K24 from the stability studies is discussed.  相似文献   

20.
This paper presents a computational study of defect nucleation associated with the kinetics of the isotropic-to-nematic phase ordering transition over heterogeneous substrates, as it occurs in new liquid crystal biosensor devices, based on the Landau-de Gennes model for rod-like thermotropic nematic liquid crystals. Two regimes are identified due to interfacial tension inequalities: (i) nematic surface film nucleation and growth normal to the heterogeneous substrate, and (ii) nematic surface droplet nucleation and growth. The former, known as wetting regime, leads to interfacial defect shedding at the moving nematic-isotropic interface. The latter droplet regime, involves a moving contact line, and exhibits two texturing mechanisms that also lead to interfacial defect shedding: (a) small and large contact angles of drops spreading over a heterogeneous substrate, and (b) small drops with large curvature growing over homogeneous patches of the substrate. The numerical results are consistent with qualitative defect nucleation models based on the kinematics of the isotropic-nematic interface and the substrate-nematic-isotropic contact line. The results extend current understanding of phase ordering over heterogeneous substrates by elucidating generic defect nucleation processes at moving interfaces and moving contact lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号