首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-induced absorption (LIA) in thermally reduced congruent and near-stoichiometric Er:LiNbO3 crystals, which have different cuts of crystal (X- and Y-cut) and different doping levels of Er3+ (0.2, 0.4, 0.6 and 1.0 mol %), has been studied within continuous-wave light intensity by using polarized 632.8 nm beam as probe light and polarized 488 nm beam as pump light. Effects of thermal reduction condition, pump intensity, Li/Nb ratio and Er-doping level on the LIA are summarized and discussed. Studies on spectral characteristics of both linear absorption and light-induced absorption show that photo-ionization of bipolarons into small polarons plays a predominant role in the LIA process. The role of the Er3+ ion in the LIA is investigated by studying the doping level and the thermal reduction effects on the absorption and emission properties of Er3+. The results show the possibility that the Er3+ ion directly participates in the light-induced charge transport is small. It affects the LIA only via the bypassing part of pump intensity to excite near-infrared emissions of Er3+. The thermaleffect on the LIA is demonstrated. A two-center model with inclusion of the thermal contribution can qualitatively explain two major LIA characteristics that include the appearance of a slow stage in the LIA procedure and the unsaturation behavior of the LIA coefficient in high pump intensity regime. In addition, the pump depletion effect on the LIA characteristics is discussed. The possibility of pump beam fanning arising from light-induced scattering is ruled out experimentally. PACS 42.70.Hj; 42.70.Ln; 42.70.Mp; 42.65.Hw; 81.05.-t  相似文献   

2.
An X-ray powder diffraction study was performed on vapor transport equilibration (VTE) treated Er:LiNbO3 crystals with different doping levels (0.2, 0.4 and 2.0% Er per cation site), different cut orientations (X- and Z-cuts) and different VTE durations (120, 150 and 180 h). Their diffraction characteristics were compared with those of pure congruent LiNbO3 and as-grown Er:LiNbO3. The most significant characteristic is the appearance of additional weak and broad peaks around the 2θ angles 30° and 59° in the diffraction patterns of both X- and Z-cut 2.0 mol% doped VTE crystals, confirming that they precipitated. A further comparison of their diffraction data with the powder diffraction files indicated that the new phase in these precipitated crystals is ErNbO4, which has an approximate concentration of 1.0%, 1.065%, 1.485% for 120, 150 and 180 h crystals, respectively. The crystalline grain sizes of the new phase are 132.2∼184.1?. The unit cell parameters of the as-grown and VTE crystals were also determined from diffraction data; the variation from pure LiNbO3 to as-grown Er:LiNbO3 was qualitatively explained according to the crystal structure of LiNbO3 and using the concept of ionic radius. VTE brings the crystal closer to a stoichiometric composition, thus causing the contraction of the lattice constants. Finally, a tentatively qualitative explanation for precipitate formation is given on the basis of crystal structure. Received: 2 August 2000 / Accepted: 29 March 2001 / Published online: 20 June 2001  相似文献   

3.
Polarized visible and infrared emission characteristics of Er3+ ions in vapor-transport-equilibration (VTE)-treated LiNbO3 crystals codoped with different concentrations of Zn and Er were investigated in comparison with corresponding as-grown crystals. The results show that the VTE treatment leads to substantial spectral changes of Er3+ emissions at 0.65, 0.98 and 1.5 μm regions, and the spectral changes in the 0.98 and 1.5 μm regions appear to be Zn-concentration-dependent. It is concluded in combination with X-ray powder diffraction results and optical absorption characteristics reported previously that the VTE treatment resulted in crystalline phase transformation with respect to Er3+ ions from original LiNbO3 to ErNbO4 phase in all crystals studied. The formation of the ErNbO4 phase and the Zn2+ codopants are responsible for the VTE-induced substantial spectral changes. The emission characteristics of the ErNbO4 precipitates in the Zn/Er-codoped crystals are found to be very different from those of the ErNbO4 precipitates in the only Er-doped crystal in the infrared region, and the difference is attributed to the influence of the Zn2+ codopant on the Er3+ ion environment. The mechanism of the crystalline phase transformation is qualitatively explained from the viewpoint of the declined solubility of Er3+ ion in a Li-rich LiNbO3 crystal and from the phase diagram of Li2O-Nb2O5 system.  相似文献   

4.
Raman spectra of as-grown and reduced (or annealed) Er:LiNbO3 crystals, which have different cut orientations, varied Li/Nb ratio, and different Er-doping levels of 0.2, 0.4, 0.6, 1.0, and 2.0 mol%, were recorded at room temperature over a wavenumber range of 50–1000 cm-1 by use of backward scattering geometries. The spectra are assigned on the basis of their Raman scattering features and previous relevant work. A weak but well-resolved peak around 633 cm-1 appears in the E(TO) spectra that were recorded under the configuration of X(ZY)X̄(for an X-cut sample) or Y(ZX)Ȳ(for a Y-cut sample) for all crystals studied. The appearance of this peak in the E(TO) spectrum provides further evidence for a previous attribution of this peak to E(TO9) mode. Some additional peaks distributed in the low wavenumber region ranging from 101–137 cm-1 are attributed to Er3+ fluorescence with a wavelength range of 490.41–491.3 nm. The reduction effects include a significant drop of the Raman scattering intensity and a slight narrowing instead of a broadening in the linewidth. The reduction procedure hardly affects the spectral shape and the wavenumber of most of the phonons. The anneal effect is similar to the reduction effect and both effects are not as obvious as the vapor transport equilibration (VTE) effect. In addition, the present Raman scattering result provides evidence for our earlier reported individual result on light-induced diffraction from strongly reduced Er:LiNbO3 crystals. PACS 42.70.Hj; 81.05.-t; 63.20.-e; 78.30.-j.  相似文献   

5.
Rare-earth ions of Nd3+ and Er3+ in nearly stoichiometric and MgO-doped LiNbO3 crystals, respectively, have been investigated by employing an X-band electron spin resonance (ESR) spectrometer. The grown crystal was heated in Li-rich powder at 1100°C in order to make it nearly stoichiometric by the vapor transport equilibrium technique. Due to the fact that the ESR linewidth is much narrower in the stoichiometric crystal than in the congruent LiNbO3, we were able to determine the hyperfine constants of143Nd and145Nd at 4 K. By codoping MgO into LiNbO3, a new Er3+ center has been observed with a differentg-tensor. We propose that the new Er3+ center in Mg-doped LiNbO3 occupies the niobium site due to the local excessive Mg2+ ion at the lithium site, whereas Nd3+ and Er3+ in congruent crystals reside at the lithium site. The proposal is consistent with theg-value anisotropy.  相似文献   

6.
Polarized downconversion, 980-nm-upconversion and near-infrared emission characteristics of vapor-transport-equilibrated (VTEed) bulk Er (0.4 mol%)/MgO (6 mol%)-codoped LiNbO3 crystals were investigated. The downconversion and upconversion visible emissions display similar VTE effects including the drop of emission intensity and the weakening of polarization dependence. At 0.98 and 1.5 μm regions, the VTE has a weak effect on the emission intensity, but a strong effect on the spectral shape. The crystalline phases in these bulk Er/Mg-codoped VTE crystals are determined by comparing their infrared emission characteristics with those of pure ErNbO4 powder and locally Er-doped MgO (4.5 mol%):LiNbO3 crystal. The results show that the Er3+ ions present in these bulk Er/Mg-codoped VTE crystals as a mixture of Er:LiNbO3 and ErNbO4 phases. The percentages of the ErNbO4 phase contained in these VTE crystals were evaluated from the 1531 and 1536 nm characteristic absorption areas. The contents of constituent elements were determined by chemical analysis.  相似文献   

7.
The congruent In (3 mol%):Fe (0.03 wt%): LiNbO3 crystal has been grown by Czochralski method in air. Some crystal samples were reduced in Li2CO3 powder, and others were oxidized in Nb2O5 powder. The defects and ions location in crystal were investigated by infrared (IR) transmission spectrum. The photorefractive properties were measured by two-wave coupling and light-induced scattering resistance experiments. In the oxidized sample, the photovoltaic effect was the dominant process during recording. However, for the as-grown sample as well as the reduced, the photorefractive effect was governed by the diffuse field and the photovoltaic field, together. In addition, the reduction treatment made the photoconductivity increase, which resulted in shorter erasure time and lower diffraction efficiency, but higher light-induced scattering resistance ability. The oxidation treatment caused the inverse effect.  相似文献   

8.
高掺镁铌酸锂晶体的生长和倍频性能   总被引:11,自引:0,他引:11       下载免费PDF全文
我们通过测定MgO在同成分LiNbO3中的有效分凝系数、相位匹配温度与MgO浓度之间的关系,找到了使Mg:LiNbO3晶体的相位匹配温度达到最高的掺MgO配方,并克服了Mg:LiNbO3晶体在高掺杂生长时易出现生长条纹和脱溶等问题,从而生长出了抗光折变能力强,光学均匀性良好的Mg:LiNbO3晶体。用于连续泵浦Nd:YAG声-光调Q腔内倍频时,获得了平均功率最高达2瓦的二次谐波输出。 关键词:  相似文献   

9.
Li-rich (Li-poor) vapor transport equilibration (VTE) treatments on a number of Z-cut 0.47 mm thick congruent MgO (5 mol% in melt) : LiNbO3 crystals were carried out at 1100°C over different durations ranging in 1–172 (40–395) h. Neutron activation analysis shows that neither Li-rich nor Li-poor VTE-induced Mg and Nb loss from the crystal occurred. The Li2O content in the crystal was measured as a function of VTE duration by the gravimetric method. The Li-rich/Li-poor VTE effects on OH absorption were studied in comparison with the as-grown crystal. The study shows that the Li-rich VTE results in OH absorption band annihilation. After further oxidation treatment the band reemerges and peaks at the same wavenumber as that of the as-grown crystal (∼3535.6 cm−1), showing that the MgO concentration in the Li-rich VTE crystal is still above the optical-damage threshold. The Li-poor VTE causes OH band shift to 3486.3–3491.6 cm−1, indicating that the MgO concentration in all Li-poor VTE crystals is all below the optical-damage threshold. Further successive Li-rich VTE and oxidation treatments on the Li-poor VTE-treated crystal lead the band to shift back to 3535.6 cm−1, showing that the post Li-rich VTE brought the Li-poor VTE-treated crystal above the optical-damage threshold again. It is found that the peaking position, band width, peaking absorption and band area of the absorption at ∼3486 cm−1 all increase monotonously with the decrease of the Li2O content arising from prolonged Li-poor VTE, and quantitative relationships to the Li2O content are established for the latter two parameters. The VTE effects on the OH absorption are conducted with the VTE-induced OH content alteration and charge redistribution.  相似文献   

10.
Raman spectra of as-grown and vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different cut orientations (X-cut and Z-cut), different Er-doping levels (Er:(0.2, 0.4 and 2.0 mol%)LiNbO3) and different VTE durations (80, 120, 150 and 180 h), were recorded at room temperature in the wavenumber range 50-1000 cm−1 by using backward scattering geometry. The spectra were attributed on the basis of their spectral features and the previous experimental work and the most recent theoretical progress in lattice dynamics on pure LiNbO3. In comparison with the pure crystal the most remarkable effect of Er-doping on the Raman spectrum is observed for the E(TO9) mode. It does not appear at 610 cm−1 as the pure crystal, but locates at 633 cm−1. In addition, the doping also results in the lowering of the Raman phonon frequency, the broadening of the Raman linewidth and the changes of the relative Raman intensity of some peaks. The VTE treatment results in the narrowing of the linewidth, the recovery of the lowered phonon frequency and the further changes of relative Raman intensity. The narrowing of Raman linewidth indicates that the VTE processing has brought these crystals closer to stoichiometric composition. The VTE treatment has induced the formation of a precipitate ErNbO4 in the high-doped Er(2.0%):LiNbO3 crystals whether X- or Z-cut. For these precipitated crystals, besides above linewidth and phonon frequency features, they also display more significant Raman intensity changes compared with those not precipitated crystals. In addition, a slight mixing between A1(TO) and E(TO) spectra is also observed for these precipitated crystals. Above doping and VTE effects on Raman spectra were quantitatively or qualitatively correlated with the characteristics of the crystal structure and phonon vibrational system.  相似文献   

11.
Near stoichiometric LiNbO3 crystal wafers of thickness up to 2 mm were prepared by vapour transport equilibration technique (VTE) at various process temperatures. Crystals were characterised by measurement of the UV absorption edge, refractive index, second harmonic generation (SHG) efficiency, and conoscopy pattern analysis. The comparison of VTE treated crystals show that the blue shift in cut off wavelength occurred with the increasing process temperature (i.e. increasing Li/Nb ratio). The refractive indices were found decreasing with increasing process temperature of VTE samples. The SHG efficiency increases in the range of 1.98-2.3 times for the VTE processed samples with respected to congruent crystals. Conoscopy pattern reveals the optical homogeneity of the VTE treated crystal.  相似文献   

12.
Lines of light-induced scattering with extraordinary polarization from two ordinary polarized pump waves in LiNbO3:Fe crystals are observed. A nonlinear mixing of four copropagating waves in the crystal with photovoltaic charge transport is shown to be the reason for parametric amplification of the seed radiation scattered from optical imperfections of the sample.  相似文献   

13.
Photorefractive properties and structural and optical homogeneity of (1) LiNbO3:Cu crystals ([Cu] = 0.015 mas %) grown from a congruent melt, (2) nominally pure stoichiometric crystals grown from a melt with 58.6 mol % of Li2O (LiNbO3stoich), and (3) nominally pure congruent crystals (LiNbO3congr) have been studied using the Raman-spectroscopy method with excitation in the UV, visible, and near-IR ranges; the laser-conoscopy method; and the electron paramagnetic resonance-spectroscopy method. In optically uniaxial LiNbO3 crystals, a weak optical biaxiality has been revealed, which is attributed to an insignificant deformation of the optical indicatrix. This deformation can be caused both by the initial structural inhomogeneity of crystals and by the photorefractive effect. It has been shown that, under the action of light, charge exchange of copper cations Cu2+ → Cu+ takes place in the crystal LiNbO3:Cu ([Cu] = 0.015 mas %). The LiNbO3:Cu crystal exhibits photorefractive properties not only because of the occurrence of intrinsic defects with electrons localized at them, as is the case with the LiNbO3stoich and LiNbO3congr crystals, but also due to the charge exchange of copper cations under the action of the laser radiation.  相似文献   

14.
The results of Er3+ ion spectroscopic analysis in Sc:LiNbO3 crystals were reported. The line strengths from the ground state to the excited state were evaluated from the measured unpolarized absorption spectrum and analyzed by using standard Judd–Ofelt theory. For Sc(3 mol. %):Er (1 mol. %):LiNbO3 crystal, the obtained intensity parameters are: Ω2=3.72×10-20 cm2, Ω4=1.07×10-20 cm2, and Ω6=0.98×10-20 cm2. The fluorescence spectra and microsecond time-resolved spectra were investigated in the visible region. The excited state absorption transition strengths at 800 nm excitation were evaluated based on Judd–Ofelt theory. The results obtained here were compared to results from other research on Er:LiNbO3 crystals. PACS 71.20.Eh; 77.84.Dy; 42.70.Hj; 42.62.Fi; 42.65.Ky  相似文献   

15.
Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), -Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.  相似文献   

16.
Congruent Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was grown by the Czochralski method in air. The occupation mechanism of the Zn2+ was discussed by an infrared transmittance spectrum. The nonvolatile holographic recording in Zn(7 mol%):Ce:Cu:LiNbO3 single crystal was measured by two-photon fixed method. Zn(7 mol%):Ce:Cu:LiNbO3 single crystals present the faster recording time and higher light-induced scattering resistance ability comparing with Ce:Cu:LiNbO3 single crystals.  相似文献   

17.
The results of investigations of luminescent radiations’ kinetic characteristics for LiNbO3:Yb3+-Er3+, LiNbO3:Er3+, and LiNbO3:Yb3+ crystals under optical excitations at 532 nm and 1064 nm wavelengths are presented. The shapes and times of rise and damping of luminescent signals at 550 nm, 980 nm and 1555 nm wavelengths under selective excitations in the impurity subsystem of the investigated materials are determined. Comparison of the temporal characteristics of luminescent responses of LiNbO3 crystals doped separately with Yb3+ and Er3+ ions with those of the LiNbO3:Yb3+-Er3+ crystal allows identifying the contributions from different energy transfer processes of optical excitation taking place in the impurity subsystem of the material.  相似文献   

18.
Raman study on vapor-phase equilibrated Er:LiNbO3 and Er:Ti:LiNbO3 crystals   总被引:2,自引:0,他引:2  
Raman spectra of Er:LiNbO3 crystal and Ti-diffusedEr:LiNbO3 strip waveguide, in which the Li/Nb ratio was altered using a vapor-phase equilibration (VPE) technique, were measured at room temperature in the wave-number range 50–3500 cm-1. Both 488 and 514.5 nm radiations were used to excite Raman scattering, A1(TO) and E(TO) modes were recorded at backward scattering geometry. The results indicated that the lattice vibrational spectra of the as-grown Er:LiNbO3 are almost the same as those of pure LiNbO3 except for the little shift of the peak position and the change of relative intensity of some peaks. In comparison with the spectra of as-grown Er:LiNbO3 crystal the vapor-phase equilibrated Er:LiNbO3 and Er:Ti:LiNbO3 crystals in the lattice vibrational region exhibit the following features: firstly, Raman peaks become narrow, indicating that the VPE process has brought Er:LiNbO3 and Er:Ti:LiNbO3 crystals closer to a stoichiometric composition; secondly, relative intensity of some peaks varies with the VPE time; and finally, slight blue shifting in peak position was observed. Some of these features were correlated with the NbO6 octahedra and with the site distribution of the doped Er ions. In addition, green fluorescence peaks and/or bands associated with the electron transitions 2 H 11/2?4 I 15/2 and 4 S 3/2?4 I 15/2 of the doped Er3+ were also observed. For 488 nm excitation they appear in the wavenumber range of 1200–3000 cm-1 and are well separated from lattice vibrational region; for 514.5 nm excitation, however, these fluorescence peaks shift towards the low wavenumber region and overlap partially with the lattice vibrational spectra. Received: 24 May 2000 / Accepted: 29 May 2000 / Published online: 13 September 2000  相似文献   

19.
The congruent Mn(0.1 wt%):Fe(0.03 wt%):LiNbO3 crystals doped with different concentration of MgO(0,1,3,6 mol%) have been grown by Czochralski method in air atmosphere. Some crystal samples were reduced in Li2CO3 powder. The defects and doping ions location in crystals were investigated by UV-Vis. absorption spectrum as well as infrared transmittance spectrum analysis. In two wave coupling experiments we determined the writing time, maximum diffraction efficiency and the erasure time of four crystal samples with He-Ne laser at 633 nm. The results indicated that Mg(3 mol%):Fe:Mn:LiNbO3 was the most proper holographic recording media material among four crystals in the paper.  相似文献   

20.
We present a Judd-Ofelt spectroscopic analysis on the Mg/Er-codoped congruent lithium niobate (LiNbO3) crystals. The Judd-Ofelt model is applied to the room temperature unpolarized absorption intensities of Er3+ ions on eleven transition bands to determine their intensity parameters: Ω2=2.36×10−20 cm2, Ω4=0.76×10−20 cm2, Ω6=0.30×10−20 cm2 in Er:LiNbO3 crystal heavily codoped with MgO. The radiative lifetime of 2H9/2 becomes longer when MgO is added into Er:LiNbO3 crystal. The experimental lifetimes are obtained using microsecond time-resolved spectra at 400 nm femtosecond pulse excitation to predict radiative quantum efficiency. Combining higher radiative quantum efficiency with longer radiative lifetime, we conclude that Mg/Er-codoped LiNbO3 crystals are more suitable than Er: LiNbO3 ones in laser materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号