首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

2.
Mesoporous CeO2 and yttrium doped CeO2 (YDC) were prepared by a sol–gel process and characterized by a variety of techniques. XRD patterns showed that the undoped and doped samples had a cubic fluorite structure. The grain size decreased from 24.8 to 6.1 nm at 500 °C for pure CeO2 and YDC, respectively. N2 adsorption–desorption isotherms showed that the samples possessed typical mesopore characteristics. The BET specific surface area of the samples increased from 23.04 to 151.49 m2/g for 300 °C calcination after mesoporous CeO2 was doped with Y. It is found that the introduction of Y can inhibit the grain growth, and the presence of the pores also can be related to this obstacle to grain growth. These results are of great significance for the control of porous microstructure, crystallinity, and applications for the development of nanostructured mesoporous materials.  相似文献   

3.
Transition metal oxides (TMOs) applied as catalysts whose catalytic activities are directly affected by their pores size and pores distributions. Herein, two-dimensional Cu-doped CeO2 (2D@Cu–CeO2) and three-dimensional Cu-doped CeO2 (3D@Cu–CeO2) were prepared by adopting the mesoporous silica SBA-15 and KIT-6 as templates, respectively. Nanometer Cu-doped CeO2 (nano@Cu–CeO2) was synthesized by the method of precipitation. All catalysts were evaluated for the catalytic oxidation of CO, and the 3D@Cu–CeO2 catalyst exhibited the highest catalytic activity (complete conversion temperature T100?=?50?°C), which can be ascribed to the three-dimensional porous channel structure, larger specific surface area and abundant active surface oxygen species. In addition, complete conversion of CO had remained the same after 3D@Cu–CeO2 was observed for 12 h, indicating it has the best catalytic stability for CO.  相似文献   

4.
The formation of variable-thickness CeO2 nanoparticle mesoporous films from a colloidal nanoparticle solution (approximately 1–3-nm-diameter CeO2) is demonstrated using a layer-by-layer deposition process with small organic binder molecules such as cyclohexanehexacarboxylate and phytate. Film growth is characterised by scanning and transmission electron microscopies, X-ray scattering and quartz crystal microbalance techniques. The surface electrochemistry of CeO2 films before and after calcination at 500 °C in air is investigated. A well-defined Ce(IV/III) redox process confined to the oxide surface is observed. Beyond a threshold potential, a new phosphate phase, presumably CePO4, is formed during electrochemical reduction of CeO2 in aqueous phosphate buffer solution. The voltammetric signal is sensitive to (1) thermal pre-treatment, (2) film thickness, (3) phosphate concentration and (4) pH. The reversible ‘underpotential reduction’ of CeO2 is demonstrated at potentials positive of the threshold. A transition occurs from the reversible ‘underpotential region’ in which no phosphate phase is formed to the irreversible ‘overpotential region’ in which the formation of the cerium(III) phosphate phase is observed. The experimental results are rationalised based on surface reactivity and nucleation effects.  相似文献   

5.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

6.
The effect of synthesis conditions, the nature of components, and the ratio between the components on the phase composition, the texture, and the redox and catalytic properties of the Ce-Zr-O, Ce-Zr-M1-O (M1 = Mn, Ni, Cu, Y, La, Pr, or Nd), N/Ce-Zr-O (N = Rh, Pd, or Pt), and Pd/Ce-Zr-M2-O/Al2O3 (M2 = Mg, Ca, Sr, Ba, Y, La, Pr, Nd, or Sm) was considered. A cubic solid solution with the fluorite structure was formed on the introduction of <50 mol % zirconium into CeO2, and the stability of this solid solution depended on preparation procedure and treatment conditions. The presence of transition or rare earth elements in certain concentrations extended the range of compositions with the retained fluorite structure. The texture of the Ce-Zr-O system mainly depended on treatment temperature. An increase in this temperature resulted in a decrease in the specific surface area of the samples. The total pore volume varied over the range of 0.2–0.3 cm3/g and depended on the Ce/Zr ratio. The presence of transition or rare earth elements either increased the specific surface area of the system or made it more stable to thermal treatment. The introduction of the isovalent cation Zr4+ into CeO2 increased the number of lattice defects both on the surface and in the bulk to increase the mobility of oxygen and facilitate its diffusion in the Ce1 − x Zr x O2 lattice. The catalytic properties of the Ce-Zr-M1-O or N/Ce-Zr-M2-O systems were due to the presence of anion vacancies and the easy transitions Ce4+ ai Ce3+, M12n+ ai M1 n+, and N δ+N 0 in the case of noble metals.  相似文献   

7.
The sintering behavior of gadolinia-doped ceria powders was studied by the master sintering curve (MSC). Dilatometric analyses of powders produced by a soft chemical method were performed to provide the experimental data set for the construction of the MSC. The assumed model provided good fittings of the MSC and the activation energy for the sintering of Ce1−x Gd x O3−δ, with x = 0, 0.05, 0.1, and 0.2 were found to be in the 218–325 KJ/mol range, depending on the dopant content. The results supported that both the nanometric size of the particles and the difference in ionic radii between Gd3+ and Ce4+ affects the sintering of Gd-doped CeO2.  相似文献   

8.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

9.
We have established that introducing a promoter (Pd) and modifying additives (La2O3, CeO2) into the composition of a Co3O4/cordierite catalyst leads to an increase in its activity and selectivity during reduction of oxygen by hydrogen in the presence of nitrogen(II) oxide.  相似文献   

10.
Three different cerium citrate-based precursors were used for synthesizing CeO2 through thermal treatment. Three morphological types of CeO2 were obtained. Characterization of these oxides was carried out by XRD patterns, SEM microscopy, N2 adsorption isotherms, Raman spectroscopy, zeta potential, and UV/Vis luminescence. Ozonation of phenol catalyzed by CeO2 was studied as a representative reaction of environmental interest. The differences on the catalytic activity showed by these three oxides could be correlated to amounts of Ce3+ on CeO2 surface and, consequently, to the demand for oxygen needed to burn each precursor.  相似文献   

11.
TiO2–CeO2 oxides for application as ceramic pigments were synthesized by the Pechini method. In the present work the polymeric network of the pigment precursor was studied using thermal analysis. Results obtained using TG and DTA showed the occurrence of three main mass loss stages and profiles associated to the decomposition of the organic matter and crystallization. The kinetics of the degradation was evaluated by means of TG applying different heating rates. The activation energies (E a) and reaction order (n) for each stage were determined using Horowitz–Metzger, Coats–Redfern, Kissinger and Broido methods. Values of E a varying between 257–267 kJ mol–1 and n=0–1 were found. According to the kinetic analysis the decomposition reactions were diffusion controlled.  相似文献   

12.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

13.
A facile and efficient method for facilitating hydrogen generation from formaldehyde aqueous solution was developed using Pd nanoparticles supported on CeO2 (Pd/CeO2) as the catalyst. The prepared Pd/CeO2 catalyst exhibited 100% H2 selectivity and excellent catalytic activity for formaldehyde dehydrogenation with the initial rate of 2089 ml min−1 gPd−1 at room temperature and atmospheric pressure without any extra additive. The prepared catalyst was stable and reusable, and its catalytic activity kept almost unchanged after it was reused for the fifth run. Therefore, it is considered that this Pd/CeO2 based hydrogen generation system may serve as an alternative hydrogen supply candidate for practical application.  相似文献   

14.
A new three-component catalytic system, PdCl2/phen/M(CF3SO3)n where M = La, Y, Yb, Zn, and Cu, was studied for the copolymerization of norbornene (NBE) with CO to prepare polyketone (PK). It was found that the CF3SO3H catalytic system gave a low catalytic activity for the copolymerization of norbornene with CO, but when M(CF3SO3)n was introduced instead of CF3SO3H, the PdCl2/phen/M(CF3SO3)n catalytic system exhibited much higher activity. The effects of ligands, M(CF3SO3)n, solvents, and temperatures on the copolymerization have been discussed in detail. The results showed that with 1,10-phenanthroline (phen) and Cu(CF3SO3)2 used as cocatalysts, the corresponding reaction rate reached 82 000 g PK (mol Pd)−1h−1 when the reaction was carried out in methanol at 90°C and 3.0 MPa of CO, and the weight average molecular weight (M w) of the resultant copolymer is 1090 g/mol. The copolymer was characterized with various techniques such as FT-IR, 1HNMR, 13CNMR, TGA, and DSC. The infrared spectrum of the product includes two features at 1697 and 1732 cm−1 for the NBE/CO copolymer in CH3OH that are attributed to carbonyl groups in ketones (repeating unit) and esters (end group), respectively. Due to the tension of the ring of norbornene, the degree of copolymerization is not high. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 1, pp. 51–58. This article was submitted by the authors in English.  相似文献   

15.
The catalytic activity of the CoO/CeO2 and CuO/CoO/CeO2 systems in selective CO oxidation in the presence of hydrogen at 20–450°C ([CuO] = 1.0–2.5%, [CoO] = 1.0–7.0%) is reported. The maximum CO conversion (X) decreases in the following order: CuO/CoO/CeO2 (X = 98–99%, T = 140–170°C) > CoO/CeO2 (X = 67–84%, T = 230–240°C) > CeO2 (X = 34%, T = 350°C). TPD, TPR, and EPR experiments have demonstrated that the high activity of CuO/CoO/CeO2 is due to the strong interaction of the supported copper and cobalt oxides with cerium dioxide, which yields Cu-Co-Ce-O clusters on the surface. The carbonyl group in the complexes Coδ+-CO and Cu+-CO is oxidized by oxygen of the Cu-Co-Ce-O clusters at 140–160°C and by oxygen of the Co-Ce-O clusters at 240°C. The decrease in the activity of the catalysts at high temperatures is due to the fact that hydrogen reduces the clusters on which CO oxidation takes place, yielding Co0 and Cu0 particles, which are inactive in CO oxidation. The hydrogenation of CO into methane at high temperatures is due to the appearance of Co0 particles in the catalysts.  相似文献   

16.
The reaction of Ru3(CO)12 with 2(diphenylphosphino)ethyl-triethoxysilane (DPTS) in hydrocarbons, leads to the functionalized Ru3(CO)12−n [Ph2P(CH2)2Si(OEt3)] n (n = 1,2) complexes. The complex with two phosphine substituents was chemically anchored on mesoporous silicas, SBA-15 and MCM-41, in order to obtain two hybrid materials characterized by a different localization of the metal centre on the surface of the porous supports. A detailed investigation of the cluster, before and after chemical anchoring on the mesoporous silicas, was pursued. Particular attention was also devoted to the study of the morphological, structural and textural properties of the metal-functionalised silicas (Ru/SBA-15 and Ru/MCM-41) by infrared spectroscopy (FT-IR), scanning electron microscopy, X-ray diffraction and N2 physisorption analysis.  相似文献   

17.
It is demonstrated by ESR measurements that O 2 (CO + O2) radical anions result from CO + O2 adsorption on the oxidized surface of CeO2. These radical anions are stabilized in the coordination sphere of Ce4+ cations located in isolated and associated anionic vacancies. This reaction shows an activation behavior determined by CO adsorption. The variation of O 2 (CO + O2) concentration with CO adsorption temperature suggests that surface carbonates and carboxylates participate in this reaction. In the (0.5– 10.0)%CeO2/ZrO2 system, O 2 forms on supported CeO2 and is stabilized on Ce4+ and Zr4+ cations. The stability of O 2 -Ce4+ complexes is lower on supported CeO2 than on unsupported CeO2, indicating a strong interaction between the cerium cations and the support.__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 423–429.Original Russian Text Copyright © 2005 by Il’ichev, Kuli-zade, Korchak.  相似文献   

18.
Two mesoporous alumina samples were synthesized using the sol–gel method, and these samples were tested as catalysts in trichloroethylene combustion reaction. One alumina sample was doped with Fe to study the influence of a small amount of this agent on the characteristics and properties of alumina as a catalyst. Both catalysts (pure alumina and alumina doped with Fe) were thoroughly characterized by different techniques, such as DTA/TGA, FT-IR, XRD, SEM and TEM, and the porous characterization was conducted using a N2 physisorption technique. The doping agent presented a particular influence on the morphology and textural porosity in the alumina catalyst and therefore, it exhibited different catalytic behavior than the pure alumina catalyst. For both catalysts, the crystalline phase of γ-alumina was reported using XRD technique, and the crystallite size ranged from 7.8 to 12.8 nm. Using TEM images, the alumina catalyst doped with Fe revealed to contain a mixture of three types of iron oxide (maghemite, magnetite and hematite), mainly as roughly spherical nanoparticles. For both alumina catalysts, trichloroethylene catalytic combustion was conducted on a packed bed reactor in air at a temperature range of 50 to 600 °C. The alumina catalyst doped with Fe showed a higher catalytic activity than pure alumina, mainly due to the presence of micropores and grain morphology of flat faces.  相似文献   

19.
A mesoporous TiO2 (meso-TiO2) was synthesized, and used to prepare modified carbon paste electrode (CPE). The electrochemical sensing properties were characterized using K3[Fe(CN)6], showing that meso-TiO2 modified CPE possesses larger surface area and higher electron transfer rate. The electrochemical behavior of p-cresol was investigated. At the meso-TiO2 modified CPE, the oxidation peak current of p-cresol remarkably increases, and the oxidation peak potential shifts negatively, suggesting that meso- TiO2 exhibits highly efficient catalytic activity to the oxidation of p-cresol. Based on this, a sensitive, rapid and convenient electrochemical method was developed for the detection of p-cresol. The linear range is from 1.5 × 10−7 and 2.0 × 10−5 mol l−1, and the limit of detection is as low as 8.0 × 10−8 mol l−1. Finally, the new method was successfully used to determine p-cresol in water samples.  相似文献   

20.
Reaction of PPh2H with Pd(PPh3)4 in a 4:1 molar ratio produced the Pd complex with two diphenylphosphine ligands, Pd(PPh2H)2(PPh3)2 (1). Complex (1) was characterized by n.m.r. (1H and 31P{1H}) spectra as well as by elemental analysis. Reaction of (1) with RhCl(PPh3)3 yielded a Pd–Rh heterobimetallic complex with bridging phosphide ligands, formulated as [(Ph3P)2Pd(μ-PPh2)2Rh(PPh3)2]Cl (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号