首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the family of weighted harmonic Bloch spaces \(b_\alpha , \alpha \in {\mathbb {R}}\), on the unit ball of \({\mathbb {R}}^n\). We provide characterizations in terms of partial and radial derivatives and certain radial differential operators that are more compatible with reproducing kernels of harmonic Bergman–Besov spaces. We consider a class of integral operators related to harmonic Bergman projection and determine precisely when they are bounded on \(L^\infty _\alpha \). We define projections from \(L^\infty _\alpha \) to \(b_\alpha \) and as a consequence obtain integral representations. We solve the Gleason problem and provide atomic decomposition for all \(b_\alpha , \alpha \in {\mathbb {R}}\). Finally we give an oscillatory characterization of \(b_\alpha \) when \(\alpha >-1\).  相似文献   

2.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

3.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

4.
We study Willmore surfaces of constant Möbius curvature \({\mathcal{K}}\) in \({\mathbb{S}}^4\) . It is proved that such a surface in \({\mathbb{S}}^3\) must be part of a minimal surface in \({\mathbb{R}}^3\) or the Clifford torus. Another result in this paper is that an isotropic surface (hence also Willmore) in \({\mathbb{S}}^4\) of constant \({\mathcal{K}}\) could only be part of a complex curve in \({\mathbb{C}}^2 \cong {\mathbb{R}}^4\) or the Veronese 2-sphere in \({\mathbb{S}}^4\) . It is conjectured that they are the only possible examples. The main ingredients of the proofs are over-determined systems and isoparametric functions.  相似文献   

5.
For a real-valued function defined on a compact set \(K \subset {\mathbb {R}}^m\), the classical Whitney Extension Theorem from 1934 gives necessary and sufficient conditions for the existence of a \(C^k\) extension to \({\mathbb {R}}^m\). In this paper, we prove a version of the Whitney Extension Theorem in the case of \(C^1\), horizontal extensions for mappings defined on compact subsets of \({\mathbb {R}}\) taking values in the sub-Riemannian Heisenberg group \(\mathbb {H}^n\).  相似文献   

6.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

7.
We improve a global approximation result by Bert Alan Taylor in \({\mathbb {C}}^n\) for holomorphic functions in weighted Hilbert spaces. The main tools are a variation of the theorem of Hörmander on weighted \(L^2\)-estimates for the \({\overline{\partial }}\)-equation together with the solution of the strong openness conjecture. A counterexample to a global strong openness conjecture in \({\mathbb {C}}^n \) is also given here.  相似文献   

8.
We choose some special unit vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) in \({\mathbb {R}}^3\) and denote by \({\mathscr {L}}\subset {\mathbb {R}}^5\) the set of all points \((L_1,\ldots ,L_5)\in {\mathbb {R}}^5\) with the following property: there exists a compact convex polytope \(P\subset {\mathbb {R}}^3\) such that the vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) (and no other vector) are unit outward normals to the faces of P and the perimeter of the face with the outward normal \({\mathbf {n}}_k\) is equal to \(L_k\) for all \(k=1,\ldots ,5\). Our main result reads that \({\mathscr {L}}\) is not a locally-analytic set, i.e., we prove that, for some point \((L_1,\ldots ,L_5)\in {\mathscr {L}}\), it is not possible to find a neighborhood \(U\subset {\mathbb {R}}^5\) and an analytic set \(A\subset {\mathbb {R}}^5\) such that \({\mathscr {L}}\cap U=A\cap U\). We interpret this result as an obstacle for finding an existence theorem for a compact convex polytope with prescribed directions and perimeters of the faces.  相似文献   

9.
Let E be a Banach lattice on \({\mathbb {Z}}\) with order continuous norm. We show that for any function \(f = \{f_j\}_{j \in {\mathbb {Z}}}\) from the Hardy space \(\mathrm H_{\infty }\left( E \right) \) such that \(\delta \leqslant \Vert f (z)\Vert _E \leqslant 1\) for all z from the unit disk \({\mathbb {D}}\) there exists some solution \(g = \{g_j\}_{j \in {\mathbb {Z}}} \in \mathrm H_{\infty }\left( E' \right) \), \(\Vert g\Vert _{\mathrm H_{\infty }\left( E' \right) } \leqslant C_\delta \) of the Bézout equation \(\sum _j f_j g_j = 1\), also known as the vector-valued corona problem with data in \(\mathrm H_{\infty }\left( E \right) \).  相似文献   

10.
We estimate the oscillation of holomorphic Bergman–Besov reproducing kernels on the unit ball of \(\mathbb {C}^n\). As an application of this estimate we characterize holomorphic Bergman–Besov spaces \(A_\alpha ^p\,(\alpha \in \mathbb {R})\) in terms of double integrals of the fractions \(|f(z)-f(w)|/|z-w|\) and \(|f(z)-f(w)|/|1-\langle z,w \rangle |\) and complete the earlier works done on this subject. Our results provide, when \(\alpha \le -1\), a derivative-free characterization of \(A_\alpha ^p\).  相似文献   

11.
Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.  相似文献   

12.
We compute the \({\mathbb {Z}}\)-rank of the subgroup \(\widetilde{E}_K =\bigcap _{n\in {\mathbb {N}}} N_{K_n/K}(K_n^\times )\) of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic \({\mathbb {Z}}_\ell \)-extension \(K^c\) of K. Thus we compare its \(\ell \)-adification \({\mathbb {Z}}_\ell \otimes _{\mathbb {Z}}\widetilde{E}_K\) with the group of logarithmic units \(\widetilde{\varepsilon }_K\). By the way we point out an easy proof of the Gross–Kuz’min conjecture for \(\ell \)-undecomposed extensions of abelian fields.  相似文献   

13.
We consider a family \(M_t^n\), with \(n\geqslant 2\), \(t>1\), of real hypersurfaces in a complex affine n-dimensional quadric arising in connection with the classification of homogeneous compact simply connected real-analytic hypersurfaces in  \({\mathbb {C}}^n\) due to Morimoto and Nagano. To finalize their classification, one needs to resolve the problem of the embeddability of \(M_t^n\) in  \({\mathbb {C}}^n\) for \(n=3,7\). In our earlier article we showed that \(M_t^7\) is not embeddable in  \({\mathbb {C}}^7\) for every t and that \(M_t^3\) is embeddable in  \({\mathbb {C}}^3\) for all \(1<t<1+10^{-6}\). In the present paper, we improve on the latter result by showing that the embeddability of \(M_t^3\) in fact takes place for \(1<t<\sqrt{(2+\sqrt{2})/3}\). This is achieved by analyzing the explicit totally real embedding of the sphere \(S^3\) in \({\mathbb {C}}^3\) constructed by Ahern and Rudin. For \(t\geqslant {\sqrt{(2+\sqrt{2})/3}}\), the problem of the embeddability of \(M_t^3\) remains open.  相似文献   

14.
15.
We consider a finite composition of generalized Hénon mappings \({\mathfrak {f}}:{\mathbb {C}}^2\rightarrow {\mathbb {C}}^2\) and its Green function \({\mathfrak {g}}^+:{\mathbb {C}}^2\rightarrow {\mathbb {R}}_{\ge 0}\) (see Sect. 2). It is well known that each level set \(\{{\mathfrak {g}}^+=c\}\) for \(c>0\) is foliated by biholomorphic images of \({\mathbb {C}}\) and each leaf is dense. In this paper, we prove that each leaf is actually an injective Brody curve in \(\mathbb {P}^2\) (see Sect. 4). We also study the behavior of the level sets of \({\mathfrak {g}}^+\) near infinity.  相似文献   

16.
This paper studies the empirical laws of eigenvalues and singular values for random matrices drawn from the heat kernel measures on the unitary groups \({\mathbb {U}}_N\) and the general linear groups \({\mathbb {GL}}_N\), for \(N\in {\mathbb {N}}\). It establishes the strongest known convergence results for the empirical eigenvalues in the \({\mathbb {U}}_N\) case, and the first known almost sure convergence results for the eigenvalues and singular values in the \({\mathbb {GL}}_N\) case. The limit noncommutative distribution associated with the heat kernel measure on \({\mathbb {GL}}_N\) is identified as the projection of a flow on an infinite-dimensional polynomial space. These results are then strengthened from variance estimates to \(L^p\) estimates for even integers p.  相似文献   

17.
We show that the enveloping space \({\mathbb {X}}_G\) of a partial action of a Polish group G on a Polish space \({\mathbb {X}}\) is a standard Borel space, that is to say, there is a topology \(\tau \) on \({\mathbb {X}}_G\) such that \(({\mathbb {X}}_G, \tau )\) is Polish and the quotient Borel structure on \({\mathbb {X}}_G\) is equal to \(Borel({\mathbb {X}}_G,\tau )\). To prove this result we show a generalization of a theorem of Burgess about Borel selectors for the orbit equivalence relation induced by a group action and also show that some properties of the Vaught’s transform are valid for partial actions of groups.  相似文献   

18.
In this paper we propose to develop harmonic analysis on the Poincaré ball \({{\mathbb {B}}_{t}^{n}}\), a model of the \(n\)-dimensional real hyperbolic space. The Poincaré ball \({{\mathbb {B}}_{t}^{n}}\) is the open ball of the Euclidean \(n\)-space \(\mathbb {R}^n\) with radius \(t >0\), centered at the origin of \(\mathbb {R}^n\) and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in \(\mathbb {R}^n.\) For any \(t>0\) and an arbitrary parameter \(\sigma \in \mathbb {R}\) we study the \((\sigma ,t)\)-translation, the \((\sigma ,t)\)-convolution, the eigenfunctions of the \((\sigma ,t)\)-Laplace–Beltrami operator, the \((\sigma ,t)\)-Helgason Fourier transform, its inverse transform and the associated Plancherel’s Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when \(t \rightarrow +\infty \) the resulting hyperbolic harmonic analysis on \({{\mathbb {B}}_{t}^{n}}\) tends to the standard Euclidean harmonic analysis on \(\mathbb {R}^n,\) thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on \({{\mathbb {B}}_{t}^{n}}\).  相似文献   

19.
For \(k,m,n\in {\mathbb {N}}\), we consider \(n^k\times n^k\) random matrices of the form
$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$
where \(\tau _{\alpha }\), \(\alpha \in [m]\), are real numbers and \({\mathbf {y}}_\alpha ^{(j)}\), \(\alpha \in [m]\), \(j\in [k]\), are i.i.d. copies of a normalized isotropic random vector \({\mathbf {y}}\in {\mathbb {R}}^n\). For every fixed \(k\ge 1\), if the Normalized Counting Measures of \(\{\tau _{\alpha }\}_{\alpha }\) converge weakly as \(m,n\rightarrow \infty \), \(m/n^k\rightarrow c\in [0,\infty )\) and \({\mathbf {y}}\) is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of \({\mathcal {M}}_{n,m,k}({\mathbf {y}})\) converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For \(k=2\), we define a subclass of good vectors \({\mathbf {y}}\) for which the centered linear eigenvalue statistics \(n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ \) converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
  相似文献   

20.
This paper is a follow-up contribution to our work (Sarkar in J Oper Theory, 73:433–441, 2015) where we discussed some invariant subspace results for contractions on Hilbert spaces. Here we extend the results of (Sarkar in J Oper Theory, 73:433–441, 2015) to the context of n-tuples of bounded linear operators on Hilbert spaces. Let \(T = (T_1, \ldots , T_n)\) be a pure commuting co-spherically contractive n-tuple of operators on a Hilbert space \({\mathcal {H}}\) and \({\mathcal {S}}\) be a non-trivial closed subspace of \({\mathcal {H}}\). One of our main results states that: \({\mathcal {S}}\) is a joint T-invariant subspace if and only if there exists a partially isometric operator \(\Pi \in {\mathcal {B}}(H^2_n({\mathcal {E}}), {\mathcal {H}})\) such that \({\mathcal {S}}= \Pi H^2_n({\mathcal {E}})\), where \(H^2_n\) is the Drury–Arveson space and \({\mathcal {E}}\) is a coefficient Hilbert space and \(T_i \Pi = \Pi M_{z_i}\), \(i = 1, \ldots , n\). In particular, it follows that a shift invariant subspace of a “nice” reproducing kernel Hilbert space over the unit ball in \({{\mathbb {C}}}^n\) is the range of a “multiplier” with closed range. Our work addresses the case of joint shift invariant subspaces of the Hardy space and the weighted Bergman spaces over the unit ball in \({{\mathbb {C}}}^n\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号