首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small angle neutron scattering (SANS) measurements of D2O solutions (0.1 M) of sodium cholate (NaC) and sodium deoxycholate (NaDC) were carried out atT= 298 K. Under compositions very much above the critical micelle concentration (CMC), the bile salt micelle size growths were monitored by adopting Hayter-Penfold type analysis of the scattering data. NaC and NaDC solutions show presence of correlation peaks atQ = 0.12 and 0.1 ?-1 respectively. Monodisperse ellipsoids of the micelles produce best fits. For NaC and NaDC systems, aggregation number (9.0, 16.0), fraction of the free counterions per micelle (0.79, 0.62), semi-minor (8.0 ?) and semi-major axes (18.4, 31.7 ?) values for the micelles were deduced. Extent of micellar growth was studied using ESR correlation time measurements on a suitable probe incorporating NaC and NaDC micelles. The growth parameter (axial ratio) values were found to be 2.3 and 4.0 for NaC and NaDC systems respectively. The values agree with those of SANS.  相似文献   

2.
In this study, we have used liquid crystals (LCs) to investigate the mechanism and dynamics of structural change of phospholipid membranes caused by sodium deoxycholate (NaDC). Addition of the NaDC aqueous solution to the phospholipid [1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG)] modified aqueous/LC interface resulted in the interaction-induced change of the orientational arrangement of the LCs from a homeotropic state to a planar state. The importance of contributing parameters was determined by observing the changes in the orientation of LCs. We showed that this interaction was affected by reaction time, reaction pH, concentration of NaDC and the presence of cholesterol. Moreover, the phospholipid membrane, which became defective after being exposed to NaDC, was capable of self-repairing by excess Tris-buffered saline solution, indicating that the reaction of NaDC with the phospholipid membrane is reversible. The obtained results proved the feasibility of the method deploying the DOPG/LC interface to monitor the membrane reaction stemming from the interaction between a bioactive molecule and a phospholipid membrane.  相似文献   

3.
Studies were carried out on the oxidative degradation of monoolein, monolinolein, diolein, dilinolein, triolein and trilinolein monolayers by injecting KMnO4 solution under the monolayers. The effect of the initial surface pressure on oxidative degradation was also studied by measuring changes in the surface pressure and surface potential with time. The surface shear viscosities of these six lipids were measured in order to predict their molecular interactions at the air/water interface. The rates of oxidation for these lipids were found to be in the following order: dilinolein> monolinolein> monoolein> trilinolein> diolein> triolein. Interestingly, the surface shear viscosities of these six lipids were found to decrease in the same order. In the present study, an attempt has been made to correlate the effect of the initial surface pressure, the number of double bonds and the number of hydroxyl groups with the oxidation of these lipids by potassium permanganate solution.  相似文献   

4.
In order to add to the existing knowledge of aqueous solution behavior of bile salts in presence of amino acids, the micellization properties of sodium cholate (NaC) (1 to 20) mmol · kg−1, and sodium deoxycholate (NaDC) (0.5 to 10) mmol · kg−1 in 0.1 mol · kg−1 aqueous solution of glycine, leucine, methionine, and histidine have been investigated at different temperatures (293.15 to 318.15) K at intervals of T = 5 K by using conductivity and fluorescence probe studies. The critical micelle concentration (CMC) values have been determined and elucidated in terms of hydrophobicity as well as hydrophilicity of NaC and NaDC in aqueous solution of these additives. Thermodynamic parameters of micellization viz. standard Gibbs free energy (ΔmicGo), standard enthalpy (ΔmicHo), and standard entropy (ΔmicSo) have also been calculated to extract information regarding the nature of micellization of bile salts in aqueous solutions. The (enthalpy + entropy) compensation plots have been interpreted to the contribution of chemical part towards micellization or stability of the micelle formed.  相似文献   

5.
The interaction between aggregates of sodium deoxycholate and an optical probe, sensitive to the nature of the medium surrounding it, has been studied by circular dichroism and NMR measurements. The results indicate that the molecules of the probe are embedded in a polar medium and interact with the apolar face of sodium deoxycholate. These findings seem to be consistent with a structural model of the micelles different from that currently accepted.  相似文献   

6.
本文用表面张力(γ)和电导率(κ)方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)与天然纤维素的水溶性改性物羟乙基纤维素(HEC)的相互作用.实验结果表明,SDS-HEC溶液的γ-lgcSDS曲线和κ~CSDS曲线均呈现双拐点特征,并且γ-lgcSDS曲线上两个SDS临界浓度值(c1 )γ及(c2)γ,与κ~CSDS...  相似文献   

7.
Both the critical solution temperature (CST, or the Krafft temperature) and the critical solution pressure (CSP, or the Tanaka pressure) were determined for sodium perfluorodecanoate (NaPFDe) in water, and the result shows that the Krafft temperature is raised with the increase in the Tanaka pressure. A thermodynamic analysis has been made on the data for the critical micellization concentration (cmc) and of the solubility at various temperatures and pressures. The estimated change in the partial molal volume, resulting from micelle formation from the singly dispersed state and from the hydrated solid state, was found to be conspicuously higher for NaPFDe compared to hydrocarbon surfactants. This has been ascribed to the more pronounced role of carbon chain-water interactions and water structure effects of the fluorocarbon surfactants.  相似文献   

8.
硼氢化钠水解制氢的研究   总被引:8,自引:0,他引:8  
采用置换镀的方法在泡沫镍基体上获得不同载钌量的NaBH4水解制氢催化剂。实验结果表明,NaBH4水解制氢反应为零级反应,氢气生成速率随载钌量的增加而变快;当泡沫镍表面完全被钌覆盖时,载钌量为6%,相应的催化能力最强。与离子交换树脂载钌催化剂相比,泡沫镍载钌催化剂更稳定、耐用。实验还证实,30%比35%的NaBH4水溶液在相同的催化剂作用下更易发生水解反应;NaBH4水溶液中加入少量的NaOH有助于提高钌催化剂的催化性能。通过对NaBH4储氢体系的能量计算,说明采用该氢源体系的微型燃料电池的能量密度有望达到甚至超过锂离子电池的比能量水平。  相似文献   

9.
Dipalmitoyl phosphatidylcholine (DPPC) monolayers were characterised by surface pressure/area isotherms (π/A) and surface dilational rheological parameters at temperatures 20–40°C. The methods used were the Langmuir trough and the pendant drop micro-film balance. The latter allows accurate measurements at higher temperatures and transient drop deformation. Stable DPPC monolayers were found only for low surface pressures, π<15 mN m−1. At higher monolayer compression π decreases over a long time, mainly caused by molecular rearrangement processes in the monolayer starting in the coexisting region. At π>25 mN m−1 and 20°C relaxation experiments give evident of rupturing, brittle monolayer structures. At higher temperatures the monolayers became more fluid-like. π/A-isotherms determined by using both methods principally agree with each other, but show also remarkable differences, which cannot be explained so far satisfactory. Transient drop relaxation experiments were analysed for the short time range (600 s). At 20°C the dilational modulus (r) and the surface dilational viscosity (ξr) passes a stationary maximum at 0.54 nm2 molecule−1 and increase strongly at higher surface coverage, thus indicating crystalline monolayer structure. Increasing temperature from 20 to 30°C causes a rapid decrease of r and ξr and a shift of the stationary maximum to lower surface coverage. No evidence for crystalline structure is found. Further increase of temperature causes r and ξr increase again. This increase is caused by a rising relaxation time, while the elasticity does not change in the same manner. Such intermediate decrease of r and ξr in the range 30–40°C appears to be unusual and can be interpreted as a consequence of strong DPPC interactions and strongly pronounced retardation of monolayer deformation. The study is discussed in connection to the physiology of breathing. For pulmonary surfactants the observed behaviour seems to be understandable. It is however interesting that such complex behaviour is observed for monolayers consisting of DPPC only.  相似文献   

10.
次氯酸钠对硫化橡胶粉表面的氧化改性研究   总被引:2,自引:1,他引:2  
本文采用次氯酸钠对硫化橡胶粉进行表面氧化改性研究,通过X射线光电子能谱(XPS)、扫描电镜(SEM)、接触角测量对样品进行了表征和分析,并对其最佳工艺条件进行了探究。通过实验表明,氧化剂用量、反应温度及反应时间对胶粉的氧化反应都有影响。其最佳工艺条件的氧化剂用量为40%,反应温度为40℃左右,反应时间为3小时。  相似文献   

11.
This study investigated the mixed monolayer behavior of dipalmitoyl phosphatidylcholine (DPPC) with normal long-chain alcohols at the air/water interface. Surface pressure–area isotherms of mixed DPPC/C18OH and DPPC/C20OH monolayers at 37°C were obtained and compared with previous results for the mixed DPPC/C16OH system. The negative deviations from additivity of the areas and the variation of the collapse pressure with composition imply that DPPC and long-chain alcohols were miscible and formed non-ideal monolayers at the interface. At lower surface pressures, it seems that the attractive intermolecular force was dominant in molecular packing in the mixed monolayers. At higher surface pressures, the data suggest that the molecular packing in mixed DPPC/C16OH monolayers may be favored by the packing efficiency or geometric accommodation. Furthermore, negative values of excess free energy of mixing were obtained and became significant as the hydrocarbon chain length of alcohols increased, which indicates there were attractive interactions between DPPC and long-chain alcohols. In each free energy of mixing–composition curve, there was only one minimum and thus a phase separation did not exist for mixed DPPC/long-chain alcohol monolayers.  相似文献   

12.
近几年来我国城市空气质量虽有所改善,但改善幅度不大.2004年我国SO2排放量达2254.9万吨,出现酸雨的城市比上年增加了2.1个百分点[1].  相似文献   

13.
It has been established that polymer-bound crown ethers L1 and L2 are effective sorbents for sodium salts in aqueous solution; the manner in which sodium salts are bound by these ligands differs. Complex compounds of immobilized macrocyclic polyether L1 with sodium salts have been shown to have the properties of reversible anion exchangers.L. V. Pisarzhevskii Institute of Physical Chemistry, Ukrainian Academy of Sciences, 252028 Kiev. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 87–91, January, 1992.  相似文献   

14.
The salicylate ion increases the rate of bile flow (choleretic effect) and bile salts are known to affect the colonic absorption of oxalate. Owing to this physiological relevance of salicylate and oxalate ions, critical micelle concentration (cmc) values of sodium deoxycholate (NaDC) were determined in aqueous sodium oxalate, sodium salicylate, and sodium chloride solutions by using surface tension, fluorescence, and EMF methods. The results indicate, besides a counterion effect, the influence of coanions on the cmc. In the range from 25 to 40 °C, cmc increases almost linearly with temperature. In the temperature range from 30 to 40 °C, the counterion binding constant β of NaDC micelles has the same value (0.17±0.01) in the presence of sodium chloride and sodium salicylate. On the other hand, in sodium oxalate solution β=0.05±0.02 when oxalate concentration is less than or equal to c* and β=0.48±0.04 above c*, where c*≈0.038 mol kg(-1). EMF measurements also supported this type of counterion binding to NaDC micelles in sodium oxalate solutions. In sodium oxalate solution, at c* a change in the shape of deoxycholate micelles is expected to take place. Salicylate, oxalate, and chloride coanions have a similar effect on the adsorption of NaDC. This study reveals that the choleretic effect of salicylate is not due to the influence of salicylate ions on the micellization of NaDC.  相似文献   

15.
The monolayer behavior of three mixed systems of dipalmitoyl phosphatidyl choline (DPPC) with sterols; cholesterol (Ch), stigmasterol (Stig), and cholestanol (Chsta) formed at the interface of air/water (phosphate buffer solution at 7.4 with addition of NaCl) was investigated in terms of surface pressure (π) and molecular occupation surface area (A) relation. A series of πA curves at every 0.1 mol fraction of each sterol for the three combinations of mixed systems were obtained at 25.0 °C.

On the basis of the πA curves, the additivity rule in regard to A versus sterol mole fraction (Xst) was examined at discrete surface pressures such as 5, 10, 15, 20, 25, 30 mN m−1, and then from the obtained AXst curves the partial molecular areas (PMA) were determined. The AXst relation exhibited a marked negative deviation from ideal mixing in the pressure range below 10 mN m−1, i.e. in the expanded liquid film region (below the transition pressure of DPPC).

The PMA of Ch at π=5 mN m−1, for example, was found to be conspicuously negative in the range of XCh=0–0.2 (about −0.4 nm2 per molecule) and slightly positive (ca. 0.1 nm2 per molecule) in the range XCh=0.2 to 0.4. Above XCh=0.5, Ch’s PMA was almost the same as the surface area of pure Ch, while DPPC’s PMA was reduced to 60% of that of the pure system.

Excess Gibbs energy (ΔG(ex)) as a function of Xst was estimated at different pressures. Applying the regular solution theory to thermodynamic analysis of ΔG(ex), the activity coefficients (f1 and f2) of DPPC and the respective sterols as well as the interaction parameter (Ip) in the mixed film phase were evaluated; the results showed a marked dependence on Xst.

Compressibility Cs and elasticity Cs−1 were also examined. These physical parameters directly reflected the mechanical strength of formed monolayer film.

Phase diagrams plotting the collapse pressure (πc) against Xst were constructed, and the πc versus Xst curves were examined for the respective mixed systems in comparison with the simulated curves of ideal mixing based on the Joos equation.

Comparing the monolayer behavior of the three mixed systems, little remarkable difference was found in regard to various aspects. In common among the three combinations, the mole fraction dependence in monolayer properties was classified into three ranges: 0<Xst<0.2, 0.2<Xst<0.4 and 0.5<Xst<1. How the difference in the chemical structure of the sterols influenced the properties was examined in detail.  相似文献   


16.
For the mixed system of nonyl-N-methylglucamine (MEGA9) with sodium perfluorooctanoate (SPFO), the critical micelle concentrations (CMC) at atmosphreic pressure and 30°C were determined from measurement of surface tension, and those at high pressures were determined by the electroconductivity method at mole fractions of MEGA9 up to 0.6. All of MEGA9-SPFO mixed systems have been found to have a surface activity much greater than the respective pure systems, i.e., a synergism of surface activity caused by mixing MEGA9 and SPFO. The mixing reduces the pressure dependence of the CMC. This suggests that this combination is useful when it is desirable for a surfactant solution to be independent of pressure. The composition of the mixed micellar phase has been estimated by applying the Motomura equation. The Gibbs energy of the mixed micelle formation has also been calculated as a function of mole fraction of a surfactant in the surfactant mixture.To whom correspondence should be addressed.  相似文献   

17.
SDS and sodium deoxycholate (SDC) as two representative detergents have been widely used in LC–MS/MS‐based shotgun analysis of membrane proteomes. However, some inherent disadvantages limit their applications such as interference with MS analysis or their weak ability to disrupt membranes. To address this, the combinative application of SDS and SDC was developed and evaluated in our study, which comprehensively used the strong ability of SDS to lyse membranes and solubilize hydrophobic membrane proteins, and the high efficiencies of an optimized acetone precipitation method and SDC in sample clean‐up, protein recovery, and redissolution and digestion of precipitated proteins. The comparative study using a rat‐liver‐membrane‐enriched sample showed that, compared with other three commonly used methods including the filter‐aided sample preparation strategy, the combinative method not only increased the identified number of total proteins, membrane proteins, and integral membrane proteins by an average of 19.8, 23.9, and 24.8%, respectively, but also led to the identification of the highest number of matching peptides. All these results demonstrate that the method yielded better recovery and reliability in the identification of the proteins especially highly hydrophobic integral membrane proteins than the other three methods, and thereby has more potential in shotgun membrane proteomics.  相似文献   

18.
The zeta potential () measurements and the site binding theory were utilized for calculations of the parameters of the electrical double layer (edl), ionization, and complexation constants for oleic acid-aqueous sodium chloride solution interface. Assuming that is equal to the diffuse layer potential ( d ) of the edl, the charge of the diffuse part of the edl was calculated from the Gouy-Chapman equation. The intrinsic ionizaiton constant was then determined by an extrapolation method to be . Subsequently, the surface potential ( 0) was calculated, and it was found that 0 changes by 50 mV per pH unit (50 mV/pH) or 42.5 mV/pH for 10–3 and 10–2 M NaCl, respectively. For further calculations, the integral capacity of the outer zone of the compact part of the edl was assumed to be for both ionic strengths. It was established that the intrinsic complexation constant for the binding of Na+ ions with the surface of oleic acid ispK Na int = 2.9±0.5 if the integral capacity of the inner zone of the compact edl (K 1) is 80 for 10–3 M NaCl, but 280 for 10–2 M NaCl. The use of the sameK 1 value for both ionic strengths gives a differentpK Na int for different NaCl concentrations, and also provides unrealistic surface charge ( o ) values greaterfor 10–3 M NaCl than for 10–2 M NaCl, at the same pH of the solution.  相似文献   

19.
The pristine montmorillonite (P-Mt) was modified with sodium dodecyl benzene sulfonate (SDBS) to form SDBS montmorillonite (SDBS-Mt) for the purpose of enhancing the removal performance of Cu(II) from aqueous solution. The materials were characterized by means of XRD, SEM-EDS, BET, and FTIR to analyze the surface morphology and structure. SDBS-Mt displayed a higher adsorption capacity than P-Mt. The adsorption kinetic model and the adsorption isotherm model are depicted by the pseudo-second-order kinetic equation and the Langmuir equation, respectively. The adsorption of Cu(II) on SDBS-Mt is a spontaneous and endothermic process. The order of influence of coexisting cations on the adsorption of Cu(II) is Ni(II) > Co(II) > Zn(II). In addition, the adsorbent has great regeneration performance after five cycles of regeneration. The main mechanisms of Cu(II) adsorption by SDBS-Mt may include electrostatic attraction, ion exchange, and complexation of sulfonate groups. In brief, SDBS-Mt may be a promising, simple, and low-cost adsorbent for the treatment of Cu(II) in aqueoussolutions.  相似文献   

20.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号