首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cis-trans isomerization of chemically activated 1-methylallyl is investigated using RRKM/Master Equation methods for a range of pressures and temperatures. This system is a prototype for a large range of allylic radicals formed from highly exothermic (~35 kcal/mol) OH + alkene reactions. Energies, vibrational frequencies, anharmonic constants, and the torsional potential of the methyl group are computed with density functional theory for both isomers and the transition state connecting them. Chemically activated radicals are found to undergo rapid cis-trans isomerization leading to stabilization of significant amounts of both isomers. In addition, the thermal rate constant for trans → cis isomerization of 1-methylallyl is computed to be high enough to dominate reaction with O(2) in 10 atm of air at 700 K, so models of the chemistry of the (more abundant and more commonly studied) trans-alkenes may need to be modified to include the cis isomers of the corresponding allylic radicals. Addition of molecular oxygen to 1-methylallyl radical can form 2-butene-1-peroxy radical (CH(3)CH═CHCH(2)OO(?)), and quantum chemistry is used to thoroughly explore the possible unimolecular reactions of the cis and trans isomers of this radical. The cis isomer of the 2-butene-1-peroxy radical has the lowest barrier (via 1,6 H-shift) to further reaction, but this barrier appears to be too high to compete with loss of O(2).  相似文献   

2.
Singlet methylene was reacted with cyclopentadiene to give chemically activated bicyclo[3.1.0]hex-2-ene (BCH). The rate of isomerization of BCH to 1,4-cyclohexadiene, 1,3-cyclohexadiene, cis-1,3,5-hexatriene, and l-methylcyclopentadiene is compared with calculated rate constants using the RRKM theory and measured or estimated thermal Arrhenius parameters. Subsequent isomerizations of the C6H8 products are also measured and calculated. These include 1,4-cyclohexadiene to benzene and the reversible reactions between 1,3-cyclohexadiene, cis-1,3,5-hexatriene, and trans-1,3,5-hexatriene. The results provide new data for several of these reactions which have not been observed in thermal studies. Agreement between the observed and calculated rates using the strong collision assumption is satisfactory except for the trans-1,3,5-hexatriene to cis-1,3,5-hexatriene reaction.  相似文献   

3.
Chemically activated ethane, with an excitation energy of 114.9 ± 2 kcal/mole, was formed by reaction with methane of excited singlet methylene radicals produced by the 4358 Å photolysis of diazomethane. A decomposition rate constant of (4.6 ± 1.2) × 109 sec?1 was measured for the chemically activated ethane. This result agrees, via RRKM theory, with most other chemically activated ethane data, and the result predicts, via RRKM and absolute rate theory for E0 = 85.8 kcal/mole, E* = 114.9 kcal/mole, and kE = 4.6 × 101 sec?1, a thermal A-factor at 600°K of 1016.6±0.2 sec?1, in approximate agreement with the more recent experimental values. Combining 2 kcal/mole uncertainties in E0 and E* with the uncertainty in our rate constant yields an A-factor range of 1016.6±0.7 sec?1. It is emphasized that this large uncertainty in the A-factor results from an improbable combination of uncertainty limits for the various parameters. These decomposition results predict, via absolute rate theory (with E0(recombination) = 0) and statistical thermodynamic equilibrium constants, methyl radical recombination rates at 25°C of between 4.4 × 108 to 3.1 × 109 l.-mole?1-sec?1, which are 60 to 8 times lower, respectively, than the apparently quite reliable experimental value. A value of E0(recombination) greater than zero offers no improvement, and a value less than zero would be quite unusual. Activated complexes consistent with the experimental recombination rate and E0(recombination) = 0 greatly overestimate the experimental chemical activation and high pressure thermal decomposition rate data. Absolute rate theory as it is applied here in a straightforward way has failed in this case, or a significant amount of internally consistent data are in serious error. Some corrections to our previous calculations for higher alkanes are discussed in Appendix II.  相似文献   

4.
5.
Fragmentation mechanisms of ionized butylbenzene to give m/z 91 and m/z 92 fragment ions have been examined at the G3B3 and G3MP2B3 levels of theory. It is shown that the energetically favored pathways lead to tropylium, Tr(+), and methylene-2,4-cyclohexadiene, MCD(?+), ions. Formation of m/z 91 benzyl ions, Bz(+), by a simple bond fission (SBF) process, needs about 30 kJ/mol more energy than Tr(+). Possible formation of C(7)H(8)(?+) ions of structures different from the retro-ene rearrangement (RER) product, MCD(?+), has been also considered. Comparison with experimental data of this "thermometer" system is done through a kinetic modeling using Rice-Ramsperger-Kassel-Marcus (RRKM) and orbiting transition state (OTS) rate constant calculations on the G3MP2B3 0 K energy surface. The results agree with previous experimental observation if (i) the competitive formation of Tr(+) and Bz(+) is taken into account in the m/z 91 pathway, and (ii) the stepwise character of the RER fragmentation is introduced in the m/z 92 fragmentation route.  相似文献   

6.
The unimolecular decomposition of chemically activated methylallylether (MAE) formed by the cross combination of methoxymethyl and vinyl radicals was studied in the gas phase. The experimentally determined rate constant was found to be 1.11 × 108 sec?1 at 9.6°C for the decomposition of MAE into propene and formaldehyde. The decomposition of MAE via the six-center retro-“ene” type transition state is analyzed by using the RRKM unimolecular reaction theory. For the molecular parameter assignments of energized MAE, a model which contains one internal rotational mode is supported, and MAE decomposition is characterized by a tight complex model. The best agreement between experimental and theoretical results was found when a critical energy of 40.1 kcal/mol was used.  相似文献   

7.
Chlorocyclopropane has been produced by addition of CH2(1A1) and CH2(3B1) to chloroethene. CH2 was generated by the photolysis of ketene at 313 and 366 nm. Chlorocyclopropane was formed in a chemically activated state, had an energy content between 378 and 427 kJ/mol, and reacted in three parallel channels to 3-chloropropene, cis- and trans-1-chloropropene. As secondary reactions elimination of HCl from the chemically activated primary products occurred to form allene and propyne. The apparent rate constants for the isomerization and elimination reactions are reported. The results of RRKM calculations including distribution functions for the activated chlorocyclopropane and a stepladder model for the deactivation support the proposed reaction scheme.  相似文献   

8.
9.
10.
11.
The propagation and termination rate constants kp and kt for the radical polymerization of butyl acrylate initiated by biacetyl have been measured by using the rotating-sector method, in various solvents at 30°C. The value of kp and initiation rate Ri varied with solvents, while the value of kt did not change with solvents except for benzonitrile. The variation of kp with aromatic solvents has a trend against Hammett σp of the solvent substituents similar to that for methyl methacrylate or phenyl methacrylate except for the value in benzonitrile, when it is larger than the variation for methyl methacrylate or phenyl methacrylate. The larger variation of kp for butyl acrylate is compatible with the view that the origin of the solvent effect lies in complex formation between the propagating radical and aromatic solvent molecules. The exceptional decrease in kp and kt in benzonitrile is explained by a contraction of the poly(butyl acrylate) chain in the poor solvent.  相似文献   

12.
13.
Alky1-2,3-dihydrobenzofurans, octahydrobenzofuran, and chromans undergo skeletal isomerization, dehydroisomerization, cis-trans isomerization, and dehydrogenation in the presence of BAU-activated charcoal. An ionic mechanism including initial stripping of a hydride ion from the starting compounds is proposed for the reactions. It is shown by means of ESR spectroscopy that there is no correlation between the catalyst activity and the concentration of paramagnetic centers on it. It is assumed that quinoid groupings on the charcoal surface are the active centers.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 321–323, March, 1975.  相似文献   

14.
1,1-Dichlorocyclopropane has been produced by addition of CH2(1A1) to 1,1-dichloroethylene. CH2(1A1) was generated by the photolysis of ketene at 277–334 nm. The 1,1-dichlorocyclopropane was formed in a chemically activated state, had an energy content between 386 and 400 kJ/mol, and reacted in two parallel channels to 2,3-dichloropropene and 1,1-dichloropropene. 1,1-Dichloropropene was also formed directly by insertion of CH2(1A1) into the CH bond of 1,1-dichloroethylene. As secondary reactions elimination of HCl from chemically activated 2,3-dichloropropene occurred with 3-chloropropyne and chloroallene as products. In some of the experiments perfluoropropane was added as an inert gas. The apparent rate constants for the isomerization and elimination reactions are reported. The results of RRKM calculations including distribution functions for the activated 1,1-dichlorocyclopropane and a step-ladder model for the deactivation verify the proposed reaction scheme.  相似文献   

15.
微波辐射下甲基丙烯酸正丁酯原子转移自由基聚合   总被引:1,自引:0,他引:1  
原子转移自由基聚合(Atom transfer radical polymerization,ATRP)与其他活性聚合方法相比,具有适用单体广、反应条件温和。但其催化体系活性不高,聚合温度较高,数均分子量不高。  相似文献   

16.
The thermal isomerization of cis, anti, cis-tricyclo[3.1.0.02,4] hexane was used to produce highly vibrationally excited 1,4-cyclohexadiene. The competition between unimolecular decomposition of the energized diene (to benzene and hydrogen) and collisional stabilization was studied using the parent compound, SF6, CO2, N2, and He as quenching gases. Quenching efficiencies decreased in the order given above. By applying RRKM theory to the isomerization and decomposition reactions, it was possible to calculate the step size in a stepladder model of the deactivation of cyclohexadiene. The step sizes 〈ΔE〉 deduced (at 528 K and in units of kJ/mol) were: parent compound and SF6, 7; CO2, 5; N2, 4; He, 2. The study confirmed the utility of this unimolecular chemical activation system for energy transfer studies.  相似文献   

17.
18.
The cocondensation of atomic carbon with o, m and p-tolualdehyde at 77K results in deoxygenation to the o, m and p-tolylmethylenes which possess sufficient energy to rearrange to benzocyclobutene and styrene.  相似文献   

19.
Active centers of SiO2 formed during thermolysis of methoxylated silica surface has been studied by ESR. Several types of coordinatively unsaturated silicon atoms, which differ in location and number but show similar reactivity toward various adsorbates, have been found.
, . - , , , H2, CO, O2.
  相似文献   

20.
The atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) of acrylates (methyl acrylate and butyl acrylate) with allyl butyl ether (ABE) were investigated. Well‐defined copolymers containing almost 20 mol % ABE were obtained with ethyl‐2‐bromoisobutyrate as an initiator. Narrow molar mass distributions (MMDs; polydispersity index ≤ 1.3) were obtained from the ATRP experiments, and they suggested conventional ATRP behavior, with no peculiarities caused by the incorporation of ABE. The comparable free‐radical (co)polymerizations resulted in broad MMDs. Increasing the fraction of ABE in the monomer feed led to an increase in the level of incorporation of ABE in the copolymer, at the expense of the overall conversion. Similarly, RAFT copolymerizations with S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate also resulted in excellent control of the polymerization with a significant incorporation of ABE within the copolymer chains. The formation of the copolymer was confirmed with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). From the obtained MALDI‐TOF MS spectra for the ATRP and RAFT systems, it was evident that several units of ABE were incorporated into the polymer chain. This was attributed to the rapidity of the cross‐propagation of ABE‐terminated polymeric radicals with acrylates. This further indicated that ABE was behaving as a comonomer and not simply as a chain‐transfer agent under the employed experimental conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3271–3284, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号