首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deintercalated "Li(x)NiO2" materials (x = 0.25, 0.33, 0.50, 0.58, and 0.65) were obtained using the electrochemical route from the Li0.985Ni1.015O2 and Li0.993Ni1.007O2 compounds. Refinements of X-ray diffraction data using the Rietveld method show a good agreement with the phase diagram of the Li(x)NiO2 system studied earlier in this laboratory. Electronic conductivity measurements show a thermally activated electron-hopping process for the deintercalated Li0.5NiO2 phase. In the Li(x)NiO2 materials investigated (x = 0.25, 0.33, 0.50, and 0.58), 7Li NMR shows mobility effects leading to an exchanged signal at room temperature. A clear tendency for Li to be surrounded mainly by Ni3+ ions with the 180 degree configuration is observed, particularly, for strongly deintercalated materials with smaller Li+ and Ni3+ contents, even upon heating, when this mobility becomes very fast in the NMR time scale. This suggests that Li/vacancy hopping does occur on the NMR time scale but that Ni3+/Ni4+ hopping does not occur independently. The position of Li seems to govern the oxidation state of the Ni around it at any time; the electrons follow the Li ions to satisfy local electroneutrality and minimal energy configuration. The observed NMR shifts are compatible with the Li/vacancy and Ni3+/Ni4+ ordering patterns calculated by Arroyo y de Dompablo et al. for x = 0.25 and x = 0.50, but not for x = 0.33 and x = 0.58.  相似文献   

2.
7Li and 13C solid-state MAS NMR spectra of three lithium cuprates with known X-ray structures--lithium([12]crown-4)2 dimethyl and diphenyl cuprate (1,2) and lithium(thf)4-[tris(trimethylsilyl) methyl]2 cuprate (3)--have been measured and analysed with respect to the quadrupolar coupling constants of lithium-7, chi(7Li), and the asymmetry parameters of the quadrupolar interactions, eta(7Li), as well as the 6, 7Li and 13C chemical shifts. The chi(7Li) values of 23, 30, and 18 kHz for 1, 2 and 3, respectively, are in line with the high symmetry around the lithium nucleus in the solvent-separated structures and may be used as reference data for this structural motif. Calculations based on charges derived from ab initio 6-31 G* HF computations using the point charge model (PCM) and the program GAMESS support the experimental findings.  相似文献   

3.
The layered oxysulfides Sr2MnO2Cu2m-0.5Sm+1 (m = 1-3) consist of alternating perovskite-type Sr2MnO2 layers and copper sulfide layers. The copper ions can be replaced electrochemically and reversibly by Li. The lithiated materials were studied by Li MAS NMR, and Li resonances were observed with shifts that could be rationalized based on the number of sulfide layers. The materials were cycled versus Li and showed enhanced capacity retention in comparison to pure Cu2S; the good electrochemical performance was ascribed to the presence of the layered framework structure and rapid Li+ and Cu+ conductivity in the sulfide layers.  相似文献   

4.
A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)相似文献   

5.
High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, the system representing an ideal model system for NMR studies. 6Li resonances with large hyperfine shifts (approximately 145 ppm) were observed above the goethite point of zero charge, providing clear evidence for the presence of Li-O-Fe connectivities, and thus the formation of an inner sphere Li+ complex on the goethite surface. Even larger Li hyperfine shifts (289 ppm) were observed for Li+-exchanged goethite, which contains lithium ions in the tunnels of the goethite structure, confirming the Li assignment of the 145 ppm Li resonance to the surface sites.  相似文献   

6.
Synchrotron X-ray single-crystal diffraction analyses revealed that as-synthesized and Na-exchanged RUB-29 (Cs1−x, Nax)14Li24[Si72Li18O172yH2O (x=0, 0.9) displays the lattice symmetry I222. With increasing ion-exchange time, the Na cations preferentially replace Cs in the larger sites located at the intersections of the 10MR/10MR/8MR channels. The smaller Cs sites are then replaced. While Na cations are easily incorporated on the Cs sites, most of non-framework Li cations remain in the channel system. Relocation of Li cations onto new sites within the channels was observed only after 13 days of ion exchange. Using high-field (14.1 T) NMR spectroscopy, at least six separate 6Li resonances could be resolved for the first time by solid-state 6Li MAS NMR spectroscopy and assigned to Li in the framework and non-framework sites of the microporous lithosilicate materials. The fate of Li in both framework and extra-framework sites during exchange was also followed by 6Li MAS NMR spectroscopy with an Na-exchanged RUB-29 powder sample.  相似文献   

7.
The need to improve electrodes and Li‐ion conducting materials for rechargeable all‐solid‐state batteries has drawn enhanced attention to the investigation of lithium‐rich compounds. The study of the ternary system Li‐Si‐P revealed a series of new compounds, two of which, Li8SiP4 and Li2SiP2, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10?6 Scm?1 at 0 °C to 1.2(2)×10?4 Scm?1 at 75 °C (Li8SiP4) and from 6.1(7)×10?8 Scm?1 at 0 °C to 6(1)×10?6 Scm?1 at 75 °C (Li2SiP2), as determined by impedance measurements. Temperature‐dependent solid‐state 7Li NMR spectroscopy revealed low activation energies of about 36 kJ mol?1 for Li8SiP4 and about 47 kJ mol?1 for Li2SiP2. Both compounds were structurally characterized by X‐ray diffraction analysis (single crystal and powder methods) and by 7Li, 29Si, and 31P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2SiP2 comprises a three‐dimensional network based on corner‐sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.  相似文献   

8.
A series of “Li1+z/2(Ni0.425Mn0.425Co0.15)1−z/2O2−zFz” materials was prepared by a coprecipitation route and their structure was characterized using X-ray diffraction (XRD), as well as 7Li and 19F Magic Angle Spinning (MAS) NMR spectroscopy. Two hypotheses were considered: (i) formation of layered oxyfluoride materials and (ii) formation of a mixture between the layered material and LiF. Structural parameters were refined by the Rietveld method, using XRD diffraction data. The refinement results did not allow us to choose between these two hypotheses: no significant change in crystallinity and structural parameters was observed irrespective of the fluorine ratio. 7Li and 19F MAS NMR analyses showed signals with isotropic positions characteristic of LiF, but envelopes characteristic of very strong dipolar interactions with the electron spins of the material, demonstrating that LiF was not incorporated into the layered oxide structure but was instead present as a coating.  相似文献   

9.
A series of europium-substituted Wells-Dawson polyoxotungstates were addressed by 31P magic angle spinning (MAS) NMR spectroscopy. The electron-nuclear dipolar interaction dominates the 31P spinning-sideband envelopes. The experimental electron-nuclear dipolar anisotropies were found to be in good agreement with those calculated based on the known crystallographic coordinates and effective magnetic moments and assuming a point-dipole approximation. These electron-nuclear dipolar anisotropies directly report on the anion stoichiometry and on the positional isomerism, indicating that 31P MAS NMR spectroscopy may be a useful and quick analytical probe of the local environment in Wells-Dawson solids containing localized europium paramagnetic centers.  相似文献   

10.
Samples of Li(x)Ni0.5Mn0.5O2 and Li(x)Ni(1/3)Mn(1/3)Co(1/3)O2 were prepared as active materials in electrochemical half-cells and were cycled electrochemically to obtain different values of Li concentration, x. Absorption edges of Ni, Mn, Co, and O in these materials of differing x were measured by electron energy loss spectrometry (EELS) in a transmission electron microscope to determine the changes in local electronic structure caused by delithiation. The work was supported by electronic structure calculations with the VASP pseudopotential package, the full-potential linear augmented plane wave code WIEN2K, and atomic multiplet calculations that took account of the electronic effects from local octahedral symmetry. A valence change from Ni2+ to Ni4+ with delithiation would have caused a 3 eV shift in energy of the intense white line at the Ni L3 edge, but the measured shift was less than 1.2 eV. The intensities of the "white lines" at the Ni L-edges did not change enough to account for a substantial change of Ni valence. No changes were detectable at the Mn and Co L-edges after delithiation either. Both EELS and the computational efforts showed that most of the charge compensation for Li+ takes place at hybridized O 2p states, not at Ni atoms.  相似文献   

11.
The local environments and short-range ordering of LiNi(0.5)Mn(0.5)O(2), a potential Li-ion battery positive electrode material, were investigated by using a combination of X-ray and neutron diffraction and isotopic substitution (NDIS) techniques, (6)Li Magic Angle Spinning (MAS) NMR spectroscopy, and for the first time, X-ray and neutron Pair Distribution Function (PDF) analysis, associated with Reverse Monte Carlo (RMC) calculations. Three samples were studied: (6)Li(NiMn)(0.5)O(2), (7)Li(NiMn)(0.5)O(2), and (7)Li(NiMn)(0.5)O(2) enriched with (62)Ni (denoted as (7)Li(ZERO)Ni(0.5)Mn(0.5)O(2)), so that the resulting scattering length of Ni atoms is null. LiNi(0.5)Mn(0.5)O(2) adopts the LiCoO(2) structure (space group Rm) and comprises separate lithium layers, transition metal layers (Ni, Mn), and oxygen layers. NMR experiments and Rietveld refinements show that there is approximately 10% of Ni/Li site exchange between the Li and transition metal layers. PDF analysis of the neutron data revealed considerable local distortions in the layers that were not captured in the Rietveld refinements performed using the Bragg diffraction data and the LiCoO(2) structure, resulting in different M-O bond lengths of 1.93 and 2.07 Angstroms for Mn-O and Ni/Li-O, respectively. Large clusters of 2400-3456 atoms were built to investigate cation ordering. The RMC method was then used to improve the fit between the calculated model and experimental PDF data. Both NMR and RMC results were consistent with a nonrandom distribution of Ni, Mn, and Li cations in the transition metal layers; both the Ni and Li atoms are, on average, close to more Mn ions than predicted based on a random distribution of these ions in the transition metal layers. Constraints from both experimental methods showed the presence of short-range order in the transition metal layers comprising LiMn(6) and LiMn(5)Ni clusters combined with Ni and Mn contacts resembling those found in the so-called "flower structure" or structures derived from ordered honeycomb arrays.  相似文献   

12.
The title compound is synthesized from the elements (flowing Ar, Nb ampule, 1000 K, 48 h) and characterized by powder and single crystal XRD, 7Li and 29Si MAS NMR spectroscopy, and DFT electronic structure calculations.  相似文献   

13.
A theoretical investigation on small silicon-doped lithium clusters Li(n)Si with n = 1-8, in both neutral and cationic states is performed using the high accuracy CCSD(T)/complete basis set (CBS) method. Location of the global minima is carried out using a stochastic search method and the growth pattern of the clusters emerges as follows: (i) the species Li(n)Si with n ≤ 6 are formed by directly binding one Li to a Si of the smaller cluster Li(n-1)Si, (ii) the structures tend to have an as high as possible symmetry and to maximize the coordination number of silicon. The first three-dimensional global minimum is found for Li(4)Si, and (iii) for Li(7)Si and Li(8)Si, the global minima are formed by capping Li atoms on triangular faces of Li(6)Si (O(h)). A maximum coordination number of silicon is found to be 6 for the global minima, and structures with higher coordination of silicon exist but are less stable. Heats of formation at 0 K (Δ(f)H(0)) and 298 K (Δ(f)H(298)), average binding energies (E(b)), adiabatic (AIE) and vertical (VIE) ionization energies, dissociation energies (D(e)), and second-order difference in total energy (Δ(2)E) of the clusters in both neutral and cationic states are calculated from the CCSD(T)/CBS energies and used to evaluate the relative stability of clusters. The species Li(4)Si, Li(6)Si, and Li(5)Si(+) are the more stable systems with large HOMO-LUMO gaps, E(b), and Δ(2)E. Their enhanced stability can be rationalized using a modified phenomenological shell model, which includes the effects of additional factors such as geometrical symmetry and coordination number of the dopant. The new model is subsequently applied with consistency to other impure clusters Li(n)X with X = B, Al, C, Si, Ge, and Sn.  相似文献   

14.
(2)H NMR was examined as an approach to determine (1)H chemical shifts in solids. For high-resolution observation, the line width due to (2)H quadrupole interaction and chemical-shift anisotropy was removed by magic-angle spinning and that due to (1)H-(2)H dipolar interactions by (1)H decoupling. Further, we showed that the sensitivity can be enhanced by applying (1)H to (2)H cross polarization and by adding spinning-sideband spectra. These make it possible to obtain (2)H natural-abundance MAS spectra revealing highly resolved (2)H signals. The second-order quadrupole effects of (2)H are also examined.  相似文献   

15.
(7)Li and (6)Li nuclear magnetic resonance (NMR) experiments are carried out on the perovskite Li(3x)La(1/3-x)NbO(3). The results are compared to those obtained on the titanate Li(3x)La(2/3-x)TiO3 (LLTO) in order to investigate the effect, on the lithium ion dynamics, of the total substitution of Nb(5+) for Ti(4+) in the B-site of the ABO(3) perovskites. The XRD patterns analysis reveals that this substitution leads to a change in the distribution of the La(3+) ions in the structure. La(3+) ions distribution is very important, in regard to ionic conductivity, because these immobile ions can be considered as obstacles for the long-range Li+ motion. If compared to the titanates, the compounds of the niobate solid solution have a bigger unit cell volume, a smaller number of La(3+) ions, and a higher number of vacancies. These should favor the motion of the mobile ions into the structure. This is not experimentally observed. Therefore, the interactions between the mobile species and their environment greatly influence their mobility. (7)Li and (6)Li NMR relaxation time experiments reveal that the Li relaxation mechanism is not dominated by quadrupolar interaction. (7)Li NMR spectra reveal the presence of different Li+ ion sites. Some Li+ ions reside in an isotropic environment with no distortion, some others reside in weakly distorted environments. T(1), T(1)(rho), and T(2) experiments allow us to evidence two motions of Li+. As in LLTO, T(1) probes a fast motion of the Li+ ions inside the A-cage of the perovskite structure and T(1)(rho) a slow motion of these ions from A-cage to A-cage. At variance with what has been observed in LLTO, these different Li+ ions can be differentiated through the spin-lattice relaxation times, T(1) and T(1)(rho), as well as through the transverse relaxation time, T(2).  相似文献   

16.
2H and 7Li MAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepidocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, even at temperatures above the Néel temperature, T(N), 77 K. The formation of a Li+ inner-sphere complex on the surface of lepidocrocite was confirmed by the observation of a signal with a large 7Li hyperfine shift in the 7Li MAS NMR spectrum. The effect of pH and relative humidity (RH) on the concentrations of Li+ inner- and outer-sphere complexes was then explored, the concentration of the inner sphere complex increasing rapidly above the point of zero charge and with decreasing RH. Possible local environments of the adsorbed Li+ were identified by comparison with other layer-structured iron oxides such as gamma-LiFeO2 and o-LiFeO2. Li+ positions of Li+-sorbed and exchanged goethite were reanalyzed on the basis of the correlations between Li hyperfine shifts and Li local structures, and two different binding sites were proposed, the second binding site only becoming available at higher pH.  相似文献   

17.
Polyelectrolyte complexes (PECs) formed by the addition of substoichiometric amounts of (poly(diallyldimethyl ammonium chloride)) (PDADMAC) solutions to sodium or lithium poly(styrene sulfonate) (Na- or Li-PSS) solution contain adjustable amounts of charge balancing Li(+) or Na(+) cations, which possess ionic mobility of interest for solid electrolyte applications. Very little is known regarding the local environments and the spatial distributions of these cations and their interactions with the polyelectrolyte chains in these amorphous materials. To address such issues, the present work develops a comprehensive solid state NMR strategy based on complementary high-resolution magic-angle spinning (MAS) NMR and various dipolar spectroscopic techniques. (6,7)Li and (23)Na chemical shifts measured on a series of PECs with general composition described by B((2x-1))PSS(x)PDADMA((1-x)) (B = Li or Na and 0.53 ≤x≤ 1) reveal composition-independent local cation environments. In contrast, (7)Li{(6)Li} spin echo double resonance (SEDOR) experiments measured on (6)Li enriched materials and (7)Li{(1)H} rotational echo double resonance (REDOR) experiments are consistent with an approximately random ion distribution. The same conclusion is suggested by (23)Na{(1)H} REDOR measurements on the analogous sodium containing system indicating a non-segregated PEC structure. In apparent contrast to this conclusion, (23)Na spin echo decay spectroscopy yields nearly constant dipolar second moments over a wide composition range. This can be explained by considering that the (23)Na spin echo decays are affected by both (23)Na-(23)Na homonuclear dipolar couplings and (23)Na-(1)H heteronuclear dipolar interactions in the presence of strong homonuclear (1)H-(1)H spin exchange. In protonated Na-PSS both contributions are of comparable magnitude. In the PECs the contribution from (23)Na-(23)Na interactions decreases, while that from (23)Na-(1)H dipolar couplings with the protons from the PDADMA chains increases with decreasing Na content, resulting in superimposed opposite dependences on the ion concentration. All results for Li and Na containing PECs point at a non-phase separated polymer network with uniform ionic sites of very similar environment. The cations can be viewed as randomly distributed and located close to the polyion sulfate groups.  相似文献   

18.
采用基于密度泛函理论(DFT)的平面波赝势(PW-PP)方法, 计算了LiAlH4分解反应中各个产物的晶胞参数、电子结构、生成焓和分解反应的反应焓. 反应中各固态、气态物质的晶胞的结构优化后的晶格参数与相应的实验值均符合得较好. 对LiAlH4与Li3AlH6的电子结构分析均表明, 其中的Al—H键为共价键、Li—H键为离子键. 对各分解反应的反应焓计算结果表明, (1) LiAlH4→1/3Li3AlH6+2/3Al+H2,(2) 1/3Li3AlH6→LiH+1/3Al+1/2H2及(3) LiH+Al→LiAl+1/2H2均为吸热反应, 298 K时计算的反应焓分别为14.3、14.9 与50.9 kJ·mol-1, 与相应的实验值符合得较好.  相似文献   

19.
以乙酸盐为原料,柠檬酸为络合剂,通过溶胶-凝胶的方法制备富锂阴极材料Li2MnO3,选用草酸亚锡(SnC2O4)为锡源,用Sn 4+代替Mn 4+,获得不同掺杂量的材料. 适当含量的Sn 4+掺杂可以提高材料的放电比容量,在低电流下获得256.3 mAh·g -1的高放电比容量,但由于Sn 4+离子半径过大,不能起到稳定结构的作用,材料的倍率性能较差. 在此基础上,选用氯化亚锡(SnCl2)进行掺杂改性,在材料中同时引入Sn 4+和Cl -掺杂,获得了层状结构更完整的粉末样品. 通过共掺杂改性的阴极材料可以在20 mA·g -1的电流密度,经过80圈的循环仍然保持153 mAh·g -1的放电比容量,且此时还未出现衰减现象,库仑效率保持在96%以上;在400 mA·g -1的电流密度下提供的比容量可高达116 mAh·g -1,是未掺杂样品的2倍左右.  相似文献   

20.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号