首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A membrane based heterogeneous competitive enzyme-linked immunosorbent assay (ELISA) was used in this work to develop an immunosensor for the detection of a common herbicide, isoproturon. A screen-printed carbon working electrode with carbon counter and silver–silver chloride pseudo-reference electrode was utilized incorporating a membrane fixed into intimate contact with the working electrode to facilitate signal transduction. The membrane containing an immobilized isoproturon–ovalbumin conjugate was laminated onto the carbon working electrode and horseradish peroxidase (HRP) labeled polyclonal antibody was then applied for the competitive assay. Two different amperometric systems, hydroquinone and o-phenylenediamine (OPD) mediation reduction were utilised and the properties of the resultant sensors were compared. A flow injection apparatus was also developed utilising the immunosensor. Limits of detection for isoproturon (LLD90) were found to be as low as 0.84 ng mL−1. The senor was also validated using spiked extracted soil samples and also isoproturon contaminated samples.  相似文献   

2.
Photocatalytic oxidation of organic compounds in gas phase appears to be a promising process for remediation of polluted air. In the present work, the photocatalytic degradation of acetone, which is a typical pollutant of indoor air, was investigated by using an annular photoreactor. After a modelling by a cascade of elementary continuously stirred tank reactor, the annular photoreactor was assimilated to a plug flow reactor (PFR). No transfer limitation (external and internal) has been demonstrated for this reactor with the fibreglass photocatalytic support. The influence of several kinetic parameters has been studied such as pollutant concentration, incident light irradiance, contact time and humidity content. The Langmuir–Hinshelwood model has been verified for acetone. It can be noticed that no by-products have been detected by FID suggesting almost total mineralization. The possible minor gaseous by-products have been accumulated into a mixture of ethanol–liquid nitrogen at −50 °C then a sample of it has been injected into a GC/MS for analysis. A mechanistic pathway is then proposed for the photocatalytic degradation of acetone.  相似文献   

3.
4.
In the present study, novel hydroxyethyl cellulose/silica/graphitic carbon nitride (HEC/SiO2/C3N4) solid foams with hierarchical porous structure have been successfully fabricated with gas bubbles template combination with freeze-drying method. Compared with HEC/SiO2/C3N4-50 without gas foaming, the HEC/SiO2/C3N4-80 with air bubbles template had larger pore volume and higher porosity and specific surface area, which not only exhibited faster adsorption rate, but also presented higher saturated adsorption capacity towards methylene blue (MB) and methyl violet (MV). From the experimental results, it was found that HEC/SiO2/C3N4-80 had high adsorption capacities of 132.45 mg/g and 206.62 mg/g for MB and MV, respectively, and the adsorption process fitted the Langmuir adsorption isotherm and pseudo-second-order rate equation. Additionally, benefiting from its higher adsorption capacity and light-harvesting capability, HEC/SiO2/C3N4-80 exhibited relatively higher photocatalytic degradation efficiencies against MB and MV under visible light irradiation than HEC/SiO2/C3N4-50. More importantly, compared with the bare g-C3N4 powder, the HEC/SiO2/C3N4 solid foams could be more easily separated from the treated water, which facilitated their recycle and reuse. Therefore, the good adsorption capacity, high photocatalytic degradation activity and recyclability of the HEC/SiO2/C3N4 solid foam made it a promising candidate for the removal of organic dyes from wastewater.  相似文献   

5.
Isoproturon was extracted selectively from environmental materials (water samples) using an immunosorbent column containing anti-isoproturon antibodies encapsulated in a silica matrix by a sol-gel process. A phosphate buffered saline (PBS) conditioned immunosorbent column was used to on-line preconcentrate 5 ml well and tap water containing 0.05 μg l−1 of isoproturon, which were desorbed with 75 μl of citric acid and determined with a solid phase competitive fluoroimmunoassay. The solid phase of the immunosensor, consisting of a sol-gel glass doped with anti-isoproturon monoclonal antibody, was placed on the flow-cell of the spectrofluorometer. Free isoproturon in solution competed with a fluorescent conjugated isoproturon and reduced the support bonded fluorescence in a concentration-dependent manner. The on-line method has a detection limit of 9.7 ng l−1, relative standard deviation of 4 and 3% for 0.05 and 0.5 μg l−1, respectively, and recoveries higher than 90% for tap and well water. For comparison the off-line extraction and clean up using a C18 cartridge is also reported.  相似文献   

6.
Increasing environmental pollution caused by toxic dyes is a matter of great concern due to their hazardous nature. So it is crucial to develop processes which can destroy these dyes effectively. It has been generally agreed that reactive orange 5 (KGN) can be effectively degraded in aerated phosphotungstic acid (HPA) in a homogeneous reaction system using near-UV irradiation. In this paper, photocatalytic degradation of reactive orange 5 solutions with phosphotungstic acid was investigated, especially more attention was paid to the kinetic model and the anion degradation products. The results revealed that the photocatalytic degradation reaction of KGN with HPA in a homogenous solution can be described by Langmuir-Hinshelwood equation and Langmuir-Hinshewood kinetic model described it well. The reaction manifested the first order with lower concentration(⩽30 mg L−1) with the limiting rate constant and the adsorption constant in this case being 0.8098 mg L−1 min−1 and 4.359 10−2 L mg−1, respectively. The degradation mechanism of KGN with HPA is different from that with TiO2, the anion products of the two reaction systems are the same. The difference in degradation mechanism of KGN with HPA from that with TiO2 is caused by the nature of the photocatalyst.   相似文献   

7.
Mesoporous anatase TiO2 microspheres were prepared via solvothermal method. Ammonium tungstate was used as the W source, and ammonia gas flowing in an ammonothermal reactor as the N source for codoping. TiO2:(W,N) mesoporous microspheres, which were prepared from solvothermal treatment at 160 °C for 16 h and thermal ammonolysis at 500 °C for 2 h after calcination, have high specific surface area of 106 m2 g−1. XPS results indicate the presence of NO, Ni and W6+ in the codoped mesoporous TiO2 microspheres. Monodoping with N shifts the absorption band edge of anatase TiO2 from ultraviolet region to visible region. Although codoping with W makes the visible light absorbance decrease a little, the photocatalytic degradation of a cationic dye rhodamine B (RhB) on mesoporous TiO2:(W,N) microspheres is increased to 1.7 times of that on mesoporous TiO2:N microspheres. This may due to decreasing recombination centers by W-doping charge compensation.  相似文献   

8.
A new immobilized photocatalytic impinging jet stream reactor was designed, and the influences of the effective parameters like jet flow rate, TiO2 coating disc diameter, nozzle-to-disc distance, and initial concentration on phenol removal were investigated. The reactor was also used as a slurry reactor, and degradation efficiencies in both reactors were compared based on their catalyst loading. The results indicated that the slurry reactor has a higher degradation efficiency than the immobilized reactor at the same TiO2 loading and other operational conditions. The slurry reactor needs to separate and recover the TiO2 nanoparticles from the reaction medium which increases the overall process complexity and cost, while the immobilized reactor could be reused at least 4times without any significant decrease in removal efficiency. RTD result indicates that the tank in series model (N?=?5) could properly predict the reactors hydrodynamic behavior.  相似文献   

9.
灭多威的光催化降解动力学研究   总被引:19,自引:3,他引:19  
研究了农药灭多威在TiO2光催化下的降解产物,反应动力学及影响降解速度的因素,灭多威在TiO2催化下10min内可被完全转换为无机物而失去毒害作用,IR研究表明,灭多威的分解产物NH^+4,SO^2-4和CO2,其分争过程中准一级反应,除铜和氯离子体低浓度时有促进作用,而高浓度为阻碍作用外,大部分阴,阳离子对降解均有不利影响。  相似文献   

10.
由高能面 TiO2纳米片 (TiO2-NSs) 组装成的 TiO2空心纳米盒 (TiO2-HNBs)显示出比单独 TiO2-NSs 更强的光催化性能, 但是 TiO2-HNBs 依然属于紫外光催化剂, 无法充分利用太阳能. 因此, 开发具有可见光响应的由高能面 TiO2-NSs 组装而成的 TiO2-HNBs 具有重要意义. 本文将立方体 TiOF2与含有 N 和 S 元素的生物分子蛋氨酸混合, 通过一步焙烧制备了具有可见光响应活性的 N 和 S 元素共掺杂的 TiO2-HNBs(掺杂催化剂标记为 TMx, 未掺杂催化剂标记为 Tx, x 代表焙烧温度).由立方体 TiOF2到锐钛矿相 TiO2空心纳米盒的转变是一个自模板转化过程. 氟离子的存在降低了 TiO2高能面(001)面的表面能, 从而使得高能面 TiO2纳米片的形成变得可能. 因此, 热处理立方体 TiOF2可得到由高能面 TiO2纳米片组装的 TiO2空心纳米盒.本文系统研究了焙烧温度 (300-500 ℃) 对所制 TiO2-HNBs 结构与光催化性能的影响. 结果发现, 在 350 ℃下焙烧, TiOF2完全转化成锐钛矿相 TiO2-HNBs. 但是焙烧蛋氨酸与 TiOF2的混合物, 需 400 ℃才能完全实现 TiOF2到锐钛矿相TiO2-HNBs 的转变. 这说明蛋氨酸的加入阻碍了 TiOF2向锐钛矿相 TiO2-HNBs 的转变. XPS 结果显示, 经过 400 ℃焙烧的蛋氨酸改性样品 (TM400), N 和 S 元素成功掺入了 TiO2-HNBs 晶格, 使其产生可见光催化活性.相对于 400 ℃焙烧 TiOF2所得样品 T400, 蛋氨酸改性的 TM400 催化剂可见光降解罗丹明 B 染料 (RhB) 和 NO 氧化的性能分别提升了 1.55 倍和 2.0 倍, 这与其更强的可见光吸收性能和光生载流子分离效率有关. 400 ℃焙烧的蛋氨酸改性的 TM400 可见光催化活性稳定, 连续 5 次可见光催化 RhB 降解后, 其活性没有明显改变, 显示了潜在的应用前景.  相似文献   

11.
In this work, graphitic carbon nitride (GCN) photocatalyst-incorporated polyacrylonitrile (PAN) nanofibres (GCN/PAN nanofibres) were successfully prepared using electrospinning technique. The physicochemical properties of the fabricated GCN/PAN nanofibres were analysed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analyser, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV–vis–NIR spectroscopy. The photocatalytic degradation by GCN/PAN nanofibres exhibited 90.2% photodegradation of partially hydrolysed polyacrylonitrile (HPAM) after 180 min under UV light irradiation in a suspension photocatalytic reactor. The results suggest that the photodegradation of HPAM contaminant by GCN/PAN nanofibres was due to the synergetic effects of HPAM adsorption by the PAN nanofibres and HPAM photodegradation by the GCN. This study provides an insight into the removal of HPAM from polymer-flooding produced water (PFPW) through photocatalytic degradation of liquid-permeable self-supporting nanofibre mats as a potentially promising material to be used in industrial applications.  相似文献   

12.
Kinetics of the hydrolysis of isoproturon by hydrochloric acid has been studied spectrophotometrically in the absence and the presence of anionic sodium lauryl sulfate (NaLS) micelles. The anionic micelle was found to increase the rate of reaction. The reaction followed first-order kinetics with respect to isoproturon and was linearly dependent upon [HCl]. In both aqueous and micellar pseudophases, the reaction was started with the protonation of the amino group of isoproturon followed by attack of water to yield phenylcarbamic acid and the corresponding amine, thus obeying the addition–elimination mechanism. The surfactant decreased the activation entropy. The binding constant in consistence with the rate constants was evaluated on the basis of pseudophase ion-exchange model. The added salts (NaCl and KCl) decreased the rate of reaction due to the exclusion of H+ from micellar surfaces.  相似文献   

13.
The photocatalytic degradation of organochlorine pesticides including -, β-, γ-, δ-hexachlorobenzene (BHC), dicofol and cypermethrin were carried out on a nano-TiO2 coated films under UV irradiation in the air. The photocatalytic conditions, including the amount of TiO2, irradiation time and the intensity of light were optimized. The pesticides were most effectively degraded under the condition of 2.24 mg/cm2 on TiO2 film and a 400 W UV irradiation of high-pressure mercury lamp with a wavelength of 365 nm. A typical organochlorine pesticide, 20 μg -BHC, was dipped onto the TiO2 film surface and degraded completely within 20 min. In addition, the photocatalytic degradation pathways on the nano-TiO2 coated film were discussed.  相似文献   

14.
光催化作为一种具有前景的技术,被广泛运用于有机物降解、废水处理、空气净化、抗菌、太阳能电池等领域.在众多的光催化材料中,纳米TiO2因具有性质稳定、耐腐蚀、廉价和无毒等优点而受到广泛关注.但纳米TiO2禁带宽度较大(3.2 eV)、只对紫外光有响应及电子-空穴对易复合等特性限制了它的应用.因此,提高纳米TiO2的可见光响应一直是研究的热点.本文发展了一种在低温下制备棕色纳米TiO2的改良溶胶-凝胶法.该法以钛酸四丁酯为钛源,无水乙醇为溶剂,形成溶胶后无需陈化和高温高压,在简单温和的条件下即可制备出棕色纳米TiO2.比较了低温干燥和高温焙烧两种处理方法,结果表明,随着制备温度的升高,样品的粒子尺寸增大,比表面积减小,颜色从白色转变为棕色,在更高的温度又变浅.样品的可见光吸收在180℃时达到最大,随后减弱.在优化温度180℃下制备的TiO2-180℃纳米粒子不仅具有较小的粒径(5.0 nm),较大的比表面积(213.45 m2/g),且在整个紫外-可见光区都具有较强的吸收,其禁带宽度低至1.84 eV.X-射线光电子能谱结果表明,TiO2粒子表面的–OH/H2O含量随制备温度升高而先增加后下降.Raman光谱中Eg峰的移动和变宽表明TiO2晶格可能存在缺陷或氧空位,而TiO2-180℃纳米粒子的电子顺磁共振图谱的g值在2.003左右,对应氧空位中的未成对电子,验证了以上推测.其中TiO2-180℃纳米粒子呈现为最强的EPR信号,表明其晶格内存在最高浓度的氧空位,这是其具有强可见光吸收的原因.光催化实验结果表明,在可见光照射下,TiO2-180℃可高效降解亚甲基蓝(MB).当C(MB)=10 mg/L,pH=4,催化剂添加量为0.07 g时,TiO2-180℃催化剂的光催化活性达到最佳,光照1 h后MB降解率达到99.33%,反应速率常数(0.08287 mg/(L·min))约为同条件下P25(0.01342 mg/(L·min))的6倍.同时,TiO2-180℃催化剂在不同单色光下的光催化活性与它对单色光的光响应大致相符.循环降解实验证明TiO2-180℃催化剂具有很好的稳定性.光猝灭实验表明,·OH在光催化降解过程占主导作用,而TiO2-180℃样品表面含有较多的–OH,有利于·OH的产生,乃至光催化反应.研究表明,晶格内高浓度的氧空位导致的强可见光响应,得益于低温制备条件而保留了大量–OH/H2O的纳米粒子表面以及更大的比表面积,共同促成了TiO2-180℃优越的光催化活性.所制备的棕色纳米TiO2经过进一步修饰后有望运用于实际应用中.  相似文献   

15.
The degradation of Methyl Orange (C14H14N3SO3Na), chosen as a model sulfonated azo dye, was investigated in aqueous solutions containing suspended polycrystalline TiO2 particles under irradiation with simulated sunlight. The dye disappearance and the formation of the mineralization end products were monitored; the formation of the main transient intermediates was also examined in detail. Particular attention was devoted to the identification and to the evolution of fragments retaining the chromophoric group. The comparison of data coming from various analytical techniques led to a possible reaction mechanism for the degradation process, giving insight into an aspect of the treatment which has not been considered in previous studies.  相似文献   

16.
水中硝基酚的纳米TiO_2光催化降解   总被引:21,自引:0,他引:21       下载免费PDF全文
以主波长254nm的紫外灯作为光源,研究了锐钛型纳米TiO2对邻硝基苯酚、2,4-二硝基苯酚的光催化降解行为,并与普通TiO2作了对比;结果表明,纳米TiO2表现出很高的光催化活性,催化降解过程符合一级动力学规律。  相似文献   

17.
《Arabian Journal of Chemistry》2020,13(11):8458-8480
Wastewater contains organic compounds (fatty acids, amino acids, and carbohydrates) that have a significant amount of chemical energy. In this regard, the use of wastewater for recovering energy by some appropriate energy conversion technologies can be considered as an appropriate approach to simultaneously achieve the reduction of environmental contamination and increasing supply of energy. The Photocatalytic Fuel Cell (PFC) can provide a new approach in developing technology for simultaneous organic pollutants removal from wastewaters and power generation, but it also has disadvantages, such as requires higher voltage, more cost and complexity. To present a comprehensive vision of the current state of the art, and progress the treatment efficiency and agitate new studies in these fields, this review discussed the study covering PFC aspects, with a focus on the comparison of pollutant degradation, power generation, different photoanode and photocathode materials as well as the application of the Fenton process in PFCs.  相似文献   

18.
Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO_2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0.5%. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO_2 catalyst follows zero-order kinetics, which is different from that over pure TiO_2. The reaction rate decreases linearly with the increase of the pH of the solution.  相似文献   

19.
A photocatalytic degradation method was developed for polychlorobiphenyl (PCB) and organochloride pesticide (OCP) discrimination and quantification. A mixture of Aroclor 1260 and p,p′-DDT was irradiated at 254 nm by UV lamp (40 W) in the presence of TiO2 (30 mg mL−1 non-aqueous solution). Comparison of gas chromatograms showed that p,p′-DDT signals decreased significantly after irradiation, while Aroclor 1260s chromatograms did not show any difference before and after irradiation. Detection limits were 0.30 mg L−1 and 0.15 mg L−1 for p,p′-DDT and Aroclor 1260, respectively. The method was applied to spiked egg samples, the recoveries were found as 72% for DDT and 82.01% for Aroclor 1260.  相似文献   

20.
The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5–10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号