首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Chimie》2014,17(9):920-926
Lanthanum phosphosilicate apatites with the chemical formula Sr10–xLax(PO4)6–x(SiO4)xO, where 0  x  6, usually prepared by a solid-state reaction at about 1400 °C, were synthesized via the mechanochemical method at room temperature. The samples were characterized using powder X-ray diffraction, infrared spectroscopy and thermal analysis. The results showed that the prepared products were carbonated apatites and no secondary phase was detected. The realization of the milling under a controlled atmosphere can lead to oxyapatites containing no carbonates. The ionic conductivity of the Sr6La4(PO4)2(SiO4)4O sample was investigated by using impedance spectroscopy. The highest ionic conductivity value of 1.522 × 10−6 S·cm−1 was found at 800 °C. In the investigated temperature range, the activation energy is of 0.85 eV.  相似文献   

2.
The isomorphous substitution of smaller RE elements (Ln = Nd, Eu, Gd, Ho, Tm, and Yb) for lanthanum in the apatite silicate solid solutions La9−xLnx(SiO4)6O1.5 was studied by X-ray powder diffraction and the Rietveld structure refinement, scanning electron microscopy and energy-dispersive X-ray microanalysis. Single-phase samples were prepared by solid-state synthesis at a moderate temperature of 1200 °C using an amorphous SiO2 nanopowder (10–40 nm) as a reactant. As the atomic number of Ln increases, the complete solubility, 0 ≤ x ≤ 9, found in the systems with Ln = Nd, Eu, Gd, and Ho changes to a limited one for Ln = Tm (0 ≤ x < 1.5) and Yb (0 ≤ x < 1). The distribution of La and smaller Ln over two structurally independent cationic sites is close to statistical. In both cationic polyhedra, Ln(1)O9 and Ln(2)O7, the bond lengths Ln – O decrease with x, except the longest bonds Ln(1) – O(3) and Ln(2) – O(1) which increase slightly. The experimental results on the substitution limits agree with the values of the mixing energy, and critical temperature of miscibility calculated in the approximation of a regular solid solution.  相似文献   

3.
《Solid State Sciences》2007,9(9):869-873
Orthorhombic K2NiF4-type (Ca1+xSm1−x)CoO4 (0.00  x ≤0.15) with space group Bmab has been synthesized by the polymerized complex route. The cell parameters (a and b) decrease, while the cell parameter (c) increases with increasing Co4+ ion content. The global instability index (GII) indicates that the crystal stability of (Ca1+xSm1−x)CoO4 is not influenced by the Co4+ ion content. (Ca1+xSm1−x)CoO4 is a p-type semiconductor and exhibits hopping conductivity in the small-polaron model at low temperatures. The magnetic measurement indicates that (Ca1+xSm1−x)CoO4 shows paramagnetic behavior above 5 K, and that the spin state of both the Co3+ and Co4+ ions is low. The Co4+ ion acts as an acceptor, and the electron transfer becomes active through the Co3+–O–Co4+ path as the Co4+ ions increase.  相似文献   

4.
《Solid State Sciences》2007,9(8):693-698
Structures, thermal expansion properties and phase transitions of ErxFe2−x(MoO4)3 (0.0  x  2.0) have been investigated by X-ray diffraction and differential thermal analysis. The partial substitution of Er3+ for Fe3+ induces pronounced decreases in the phase transition temperature from monoclinic to orthorhombic structure. Rietveld analysis of the XRD data shows that both the monoclinic and orthorhombic Fe2(MoO4)3, as well as the orthorhombic ErxFe2−x(MoO4)3 (x  0.8) have positive thermal expansion coefficients. However, the linear thermal expansion coefficients of ErxFe2−x(MoO4)3 (x = 0.6–2.0) decrease with increasing content of Er3+ and for x  1.0, compounds ErxFe2−x(MoO4)3 show negative thermal expansion properties. Attempts for making zero thermal expansion coefficient materials result in that very low negative thermal expansion coefficient of −0.60 × 10−6/°C in Er1.0Fe1.0(MoO4)3 is observed in the temperature range of 180–400 °C, and zero thermal expansion is observed in Er0.8Fe1.2(MoO4)3 in the temperature range of 350–450 °C. In addition, anisotropic thermal expansions are found for all the orthorhombic ErxFe2−x(MoO4)3 compounds, with negative thermal expansion coefficients along the a axes.  相似文献   

5.
In the series La2/3?xTbxCa1/3MnO3, it is known that the compositions are ferromagnetic for smaller values of x and show spin glass characteristics at larger values of x. Our studies on the magnetic properties of various compositions in the La2/3?xTbxCa1/3MnO3 series show that the cross over from ferromagnetic to spin glass region takes place above x  1/8. Also, a low temperature anomaly at 30 K, observed in the ac susceptibility curves, disappears for compositions above this critical value of x. A mixed phase region coexists in the narrow compositional range 0.1  x  0.125, indicating that the ferromagnetic to spin glass cross over is not abrupt.  相似文献   

6.
《Comptes Rendus Chimie》2015,18(8):858-866
Apatites with the chemical formula Sr7−xCaxLa3(PO4)3(SiO4)3F2, where x = 0, 1 and 2, were prepared by mechanochemical synthesis using a planetary mill. However, the obtained apatites were carbonated. For comparison, the compound with x = 0 was synthesized by a solid-state reaction at 1300 °C. To determine the influence of the synthesis method on the distribution of the lanthanum between the two cationic sites, a refinement by the Rietveld method was carried out on the latter compound, obtained by the two synthesis methods. This study shows that lanthanum was preferentially located in the sites Me(1) when mechanochemical synthesis was used, while it has a marked preference for the sites Me(2) when heat treatment was used. In addition, the electrical properties of the compound were investigated by impedance spectroscopy. The main result is that the Arrhenius plot presents a change in slope. This break has been related to the nature of the Sr/La–F bond.  相似文献   

7.
《Solid State Sciences》2007,9(6):531-534
The most condensed crystalline fluoride that appears in the Al(OH)3-tren-HFaq.-ethanol system at 190 °C is found to be [H4tren]3/2·(Al6F24)·3H2O. The structure is monoclinic, P21/c, with a = 21.939(1) Å, b = 6.7180(2) Å, c = 23.329(1) Å, β = 111.324(2)°. (Al6F24) chains result from the connection of (Al7F30)9− polyanions by opposite AlF6 octahedra. Hydrogen bonds are established between the (Al6F24) chains and ordered or disordered [H4tren]4+ cations and water molecules.  相似文献   

8.
The enthalpy increment of the monazite-type solid solutions of LaPO4 with NdPO4, EuPO4 and GdPO4 has been measured by drop calorimetry at T = 1000 K. The results show deviations (excess enthalpy) from ideal behaviour that have been interpreted in terms of lattice strains resulting from the ion size effects of substitution of La3+ by Ln3+. For (La0.5Gd)0.5PO4 also the temperature dependence has been determined for T = (515 to 1565) K, indicating that the excess enthalpy decreases with increasing temperature.  相似文献   

9.
10.
A new hybrid organic–inorganic material with the structural formula unit [La(H2O)4(m-PO3C6H4COOH)(m-PO2(OH)C6H4COOH)(m-PO(OH)2C6H4COOH)]2 (or [La(H2O)4C21H18O15P3]2) has been synthesized under hydrothermal condition from La(NO3)3·6H2O and 3-phosphonobenzoic acid (m-PO(OH)2–C6H4–COOH) which is a rigid organic precursor possessing two types of functional groups: phosphonic acid and carboxylic acid. The two units of the produced hybrid are linked together by hydrogen bonds leading to a layered framework composing of by a repetition of inorganic and organic slices. The organic layers consist of dimeric units made of two meta-phosphono-benzoic acid linked together by hydrogen bonds involving their COOH groups. Two kinds of dimeric units are observed: PO3C6H4COOH?HOOCC6H4PO(OH)2, present 2 times in the structure, and PO2(OH)C6H4COOH?HOOCC6H4PO2(OH). The material crystallises in a monoclinic cell (C2/c (15) space group) with the following parameters: a = 42.515(4) Å, b = 7.4378(6) Å, c = 20.307(2) Å, β = 118.031(6)°, V = 5668.2(9) Å3, Z = 4, density = 1.908 g/cm3.  相似文献   

11.
A new zero-dimensional (0D) aluminophosphate monomer [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en)3Cl3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO4)2(H1.5PO4)2(H2PO4)2]6? monomer. Notably, there exists intramolecular symmetrical O?H?O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4, M = 1476.33, monoclinic, C2/c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å3, Z = 4, R1 = 0.0509 (I > 2σ(I)) and wR2 = 0.1074 (all data). CCDC number 689491.  相似文献   

12.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

13.
《Solid State Sciences》2007,9(6):521-526
Members of the spinel solid solution between Li4/3Ti5/3O4 and LiCrTiO4, i.e., Li(4−x)/3Ti(5−2x)/3CrxO4 (0  x  0.9), have been investigated as possible negative electrodes for future lithium-ion batteries. Electrochemical behaviour have been studied over the potential range 1–3.5 V vs Li+/Li. Results are promising with anodic capacities between 129 and 163 mA h/g with a flat operating voltage at about 1.5 V, which is attributed to the pair Ti4+/Ti3+. The inclusion of Cr3+ in the spinel structure enhances the specific capacity. In-situ X-ray diffraction experiments confirm that the reaction proceeds in a topotactic manner.  相似文献   

14.
The “B” type carbonate fluorapatites Ca10−x+u(PO4)6−x(CO3)xF2−x+2u, with 0  x  2 and u  x/2, were synthesized by a double decomposition method. The samples were characterized by X-ray diffraction and infrared spectroscopy. The heat of dissolution of these products in a phosphoric acid solution was measured by a C-80 SETARAM microcalorimeter. A thermochemical cycle was proposed and complementary processes were carried out in order to get the standard enthalpies of formation of these apatites. Estimation of the values of entropy of formation allowed the determination of standard Gibbs free energies of formation of these compounds. The results showed that incorporation of carbonate ions results in a decrease of the stability of the apatite structure.  相似文献   

15.
High performance La2−xSrxCuO4−δ (x = 0.1, 0.3, 0.5) cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFCs) were prepared and characterized. The investigation of electrical properties indicated that La1.7Sr0.3CuO4 cathode has low area specific resistance (ASR) of 0.16 Ω cm2 at 700 °C and 1.2 Ω cm2 at 500 °C in air. The rate-limiting step for oxygen reduction reaction on La1.7Sr0.3CuO4 electrode changed with oxygen partial pressure and measurement temperature. La1.7Sr0.3CuO4 cathode exhibits the lowest overpotential of about 100 mV at a current density of 150 mA cm−2 at 700 °C in air.  相似文献   

16.
Lanthanum silicated apatites with nominal composition La9.33+x(SiO4)6O2+3x/2 (−0.2 < x < 0.27) have been successfully synthesized by solid state reaction using a new reagent La2O2CO3 and amorphous SiO2 precursors. The formation mechanism of La2O2CO3 reagent, which cannot be purchased, has been followed by in-situ temperature depend XRD of La2O3 under CO2 atmosphere. The stability of this reagent during the synthesis step allowed to limit the formation of secondary phase La2Si2O7 and made the weighting of the reagent easier. High purity powders could be synthesized at the temperature of 1400 °C. Dense pellets (more than 98.5%) were obtained by isostatic pressing of powders calcined at 1200 °C and then sintered at 1550 °C. Traces of La2SiO5 secondary phase present in synthesized powder disappeared after densification and pure oxyapatite materials were obtained for all the compositions. Electrical measurements confirmed that conductivity behaviors of the sintered pellets were dependent to the oxygen over-stoichiometry. Indeed, a relatively high conductivity of 1 × 10−2 S cm−1 was exhibited at 800 °C for the nominal composition La9.60(SiO4)6O2.405 with low activation energy around 0.79 eV. The ionic conductivity properties were comparable with that of the earlier obtained materials.  相似文献   

17.
《Solid State Sciences》2007,9(10):955-960
The spin exchange interactions of PbCu2(PO4)2 were examined by performing the spin dimer analysis based on the extended Hückel tight-binding method, and were compared with those of SrCu2(PO4)2. The two strongest Cu–O⋯O–Cu super–superexchange interactions, J1 (with Cu⋯Cu = 5.868 Å) and J2 (with Cu⋯Cu = 5.184 Å), are strong and lead to a linear-four-spin-cluster model for both PbCu2(PO4)2 and SrCu2(PO4)2. Adjacent linear-four-spin-clusters interact substantially in SrCu2(PO4)2, but weakly in PbCu2(PO4)2. The difference in the magnetization behaviors of the two compounds was examined by calculating the magnetic excitation energies of the linear-four-spin-cluster model.  相似文献   

18.
Single crystals of Na0.50Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26, and Na4.74Nd4.26(O0.52F0.48)[SiO4]4 were synthesized via flux growth using a NaF/KF eutectic flux and the crystal structure was determined by single crystal X-ray diffraction. Na0.50Nd4.50(SiO4)3O and Na0.63Nd4.37(SiO4)3O0.74F0.26 adopt the apatite structure and crystallize in the hexagonal space group P63/m, while Na4.74Nd4.26(O0.52F0.48)[SiO4]4 crystallizes in the tetragonal space group I-4 and exhibits rare-earth mixing on the sodium site. The unit cells of the crystals are a = 9.5400(3) Å and c = 7.0331(5) Å for Na0.50Nd4.50(SiO4)3O, a = 9.5533(3) Å and c = 7.0510(4) Å for Na0.63Nd4.37(SiO4)3O0.74F0.26, and a = 12.1255(3) Å and c = 5.4656(2) Å for Na4.74Nd4.26(O0.52F0.48)[SiO4]4. These three compounds exhibit three-dimensional crystal structures that are discussed in detail in this paper.  相似文献   

19.
Orthorhombic distorted K2NiF4-type (Ca1+xNd1?x)CrO4 (0.00  x  0.15) was synthesized using a standard ceramic technique. The cell parameters (a and c) decreased, whereas the cell parameter (b) increased with the increase in x. The variation in the global instability index (GII) indicated that the crystal stability of (Ca1+xNd1?x)CrO4 was not influenced by the Cr4+ ion content. At all temperatures, the electrical conductivity (σ) of (Ca1+xNd1?x)CrO4 increased with the increase in x. (Ca1+xNd1?x)CrO4 was a p-type semiconductor and exhibited hopping conductivity in a small-polaron model in the temperature range of 290 K  T  713 K. The Cr4+ ion acts as an acceptor, and the electron transfer through the Cr3+–O–Cr4+ path becomes active as a result of the Cr4+ ion content and the Cr–O(1) distance.  相似文献   

20.
A new layered compound, K4Mn3(HPO4)4(H2PO4)2 (1), has been synthesized under hydrothermal conditions. It crystallizes in the monoclinic space group P21/n with a = 8.874(2) Å, b = 6.554(1) Å, c = 18.075(4) Å, and β = 93.39(3)°. The structure consists of zigzag [Mn3O14]n chains of edge-sharing MnO6 octahedrons and MnO7 pentagonal bi-pyramids, which form layers of formula [Mn3(HPO4)4(H2PO4)2]4? in the ab plane via H2PO4 and HPO4 units with vertex-sharing. Potassium ions lie between these layers. Magnetic measurements indicate Curie–Weiss behavior above 6 K for 1. A Heisenberg model, with alternating exchange interactions J1J1J2… within the chain and exchange interactions J3J3… between the chains, is proposed to describe the magnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号