首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An unsteady-state kinetic model of both benzene hydrogenation (HDA) and thiophene hydrogenolysis (HDS) on a sulfide hydrotreating catalyst Ni-Mo/Al2O3 has been developed. The model adequately describes experimental data obtained at the pressure 2 MPa, temperature 573 K and at various contact times and ratios of benzene/thiophene. The model is based on the assumption that the catalyst surface contains only one type of active sites, i.e., Ni atoms in the sulfide bimetallic species, which are responsible for both hydrogenolysis and hydrogenation reactions.  相似文献   

2.
The kinetics of hydroformylation of 1-decene has been investigated using a carbon-supported ossified HRh(CO)(TPPTS)3/Ba catalyst in a temperature range of 343–363 K. The effect of concentration of 1-decene, catalyst loading, partial pressure of H2 and CO, and stirring speed on the reaction rate has been investigated. A first-order dependence was observed for catalyst concentration and hydrogen partial pressure. The rate showed a typical case of substrate inhibition for high 1-decene concentration. The rate varied with a linear dependence on PCO up to a CO partial pressure of 5–6 MPa in contrast to the general trends; for most of the rhodium-phosphine catalyzed hydroformylation reactions, severe inhibition of rate is observed with an increase in CO pressure. A rate equation has been proposed, which was found to be in good agreement with the observed rate data within the limit of experimental errors. The kinetic parameters and activation energy values have been reported.  相似文献   

3.
The kinetics of the substitution reactions of [Pt(dach)(H2O)2]2+ and [Pt(en)(H2O)2]2+ (where ‘dach’ and ‘en’ are cis-1,2-diaminocyclohexane and ethylenediamine, respectively) with excess N,N′-diethylthiourea have been studied in aqueous solution by UV–Vis spectrophotometry. The effect of different N–N spectator ligands on the reactivity of platinum(II) complexes was investigated by studying the water lability of the reactant complexes. The kinetic study has been substantiated by product isolation, IR, NMR and ESI-MS spectral analysis and DFT calculations. The reactions follow normal square-planar substitution mainly in an associative way. Rate parameters have been evaluated under different conditions. The substitution rates of the complexes studied can be tuned through the nature of the N–N chelates, which is important in the development of new active compounds for cancer therapy.  相似文献   

4.
The kinetics and reaction network of the one-pot synthesis of R-1-phenylethyl acetate was investigated at 70°C in toluene over a combination of three different catalysts: PdZn/Al2O3 as a catalyst for acetophenone hydrogenation, lipase as an enzymatic catalyst for R-1-phenylethanol acylation with ethyl acetate and Ru/Al2O3 as a racemization catalyst for S-1-phenylethanol. In addition to the desired reactions, other reactions, namely hydrogenolysis and dehydration of (R, S)-1-phenylethanol and debenzylation of (R, S)-1-phenylethyl acetate also occurred. The kinetic results revealed that ethylbenzene formation was enhanced with higher amounts of PdZn/Al2O3, whereas lipase did not catalyze ethylbenzene formation. Furthermore, ethylbenzene was formed in the hydrogenolysis of (R, S)-phenylethanol and in the debenzylation of (R, S)-1-phenyl-ethylacetate over Pd/Al2O3 catalyst. The presence of Ru/Al2O3 catalyst, in which Ru was in the oxidation state of 3+, enhanced the formation of R-1-phenylethyl acetate, although no clear racemization of S-1-phenylethanol during the one-pot synthesis of R-1-phenylethyl acetate was observed. Dynamic kinetic resolution of (R, S)-1-phenylethanol in toluene, was, however, demonstrated over Ru/Al2O3 and lipase.  相似文献   

5.
The oxidation of hydrogen on palladium was studied by the chemicurrents method using the nanosized catalytic Pd/n-Si Schottky diode. The chemicurrent was found to be generated when the reactions H2+O2 and H + O + H2 + O2 occurred on the palladium surface, occasionally in the auto-oscillation mode. A model was created that describes the complex kinetic behavior of the reaction. Mathematical modeling was performed and showed the possibility of complex auto-oscillations of chemicurrent similar to those obtained in experiments. The catalytic Schottky nanodiode method was shown to be effective for reaction visualization and can be used as a new physical method for investigating the chemical processes on the catalyst surface.  相似文献   

6.
Kinetics of the vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over Pd/Al2O3 catalyst has been studied in a downflow microreactor under atmospheric pressure. Reaction rates have been measured at three different temperatures with respect to the partial pressures of o-CNB and hydrogen. The order of the reaction with respect to o-CNB was 0.53 at 280°C and increased with increasing temperature. However, with respect to hydrogen, a negative order was observed at 280°C, which decreased further with increasing in temperature. The apparent activation energy (Ea), from the Arrhenius plot was found to be 41 kJ/mol. On the basis of kinetic results a surface mechanism is suggested.  相似文献   

7.
The mechanism of the IndolPhos–Rh‐catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X‐ray crystal structure determination, kinetic measurements, high‐pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows an unsaturate/dihydride mechanism according to Michaelis–Menten kinetics. A large value of KM (KM=5.01±0.16 M ) is obtained, which indicates that the Rh–solvate complex is the catalyst resting state, which has been observed by high‐pressure NMR spectroscopy. DFT calculations on the substrate–catalyst complexes, which are undetectable by experimental means, suggest that the major substrate–catalyst complex leads to the product. Such a mechanism is in accordance with previous studies on the mechanism of asymmetric hydrogenation reactions with C1‐symmetric heteroditopic and monodentate ligands.  相似文献   

8.
The kinetics of the total oxidation of para-xylene and its mixtures with CO over alumina-supported copper catalysts has been investigated at atmospheric pressure in the temperature range from 200 to 270°C. The reactions over the catalysts 10%CuO/γ-Al2O3 and (10%CuO + 20%CeO2)/γ-Al2O3 obey the same kinetic equations in fractional rational form. These equations imply that the reactions occur at medium surface coverages of adsorbed substances and differ only in numerical values of constants. The simultaneous oxidation of para-xylene and CO reveals a complicated mutual influence associated with the formation of new intermediates inducing a change in the kinetics of the process.  相似文献   

9.
Whether proton exchange and nucleophilic substitution reactions can become competitive with electron exchange reactions in homogeneous redox catalysis processes due to the reduction of bromoesters has been evaluated.Electrochemical data have been correlated with the results of the analyses carried out in solution during, and at the end of, the catalytic reduction processes. Thus, it has been possible to obtain the values of γ (γ = cRX/cO, where cRX is the substrate concentration and cO that of the catalyst corresponding to pure catalysis conditions whereby only the electron-exchange reaction is observed.The hypothesis that the catalyst (9,10-diphenylanthracene) is dihydrogenated by the substrate according to DISP2 mechanism is in agreement with the experiments.  相似文献   

10.
The kinetics of substrate conversions in the commercially important hydrosilylation of allyl chloride with trichlorosilane, catalyzed by active carbon‐supported platinum, as well as the yields of the main product (3‐chloropropyltrichlorosilane) and by‐products (tetrachlorosilane, propyltrichlorosilane) have been studied. On the basis of the measurements performed, the pseudo first‐order rate constants (kobs, k1 and k2 from the model of competitive reactions) and activation energy (Ea = 11 kcal mol?1 (46.2 kJ mol?1)) were determined. The data obtained point to a non‐linear dependence of kobs on the catalyst amount. From the kinetic relationships, the kinetic equation was deduced. All the results of kinetic, IR spectroscopic and thermogravimetric measurements, as well as the derived kinetic equation, have confirmed the general model of consecutive–competitive reaction involving the formation of a surface complex C1 which can decompose in two directions according to the Chalk–Harrod mechanism. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The group’s recent advances in catalytic carbon-to-heteroatom bond forming reactions of alkenes and alkynes are described. For the C-O bond formation reaction, a well-defined bifunctional ruthenium-amido catalyst has been successfully employed for the conjugate addition of alcohols to acrylic compounds. The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the regioselective alkyne-to-carboxylic acid coupling reaction in yielding synthetically useful enol ester products. Cationic ruthenium-hydride catalyst generated in-situ from (PCy3)2(CO)RuHCl/HBF4·OEt2 was successfully utilized for both the hydroamination and related C-N bond forming reactions of alkenes. For the C-Si bond formation reaction, regio- and stereoselective dehydrosilylation of alkenes and hydrosilylation of alkynes have been developed by using a well-defined ruthenium-hydride catalyst. Scope and mechanistic aspects of these carbon-to-heteroatom bond forming reactions are discussed.  相似文献   

12.
The technique of ion kinetic energy spectrometry has been used to observe the unimolecular decompositions of H2O?? and H2S?? generated by charge exchange of the corresponding high velocity positive ions. The method involves dissociative double electron capture by a high velocity ion and allows the study of unstable negative ions that may be directly observable by conventional electron capture techniques. Information on the energetics of the reaction is obtained from the kinetic energy of the product ion. The reactions under consideration are shown in (1) and (2) where X = O or S.
The kinetic energy releases accompanying the reactions given in (1) and (2) have been measured and compared to those for the collision-induced reactions which produce the corresponding positive ions. The results have been used to deduce that the sequence of steps in the formation of the fragment negative ions is that given in (1) and (2). The cross section of OH? formation is observed to be somewhat greater than for O? production. This result is in contrast with dissociative electron capture cross sections from the neutral species and is interpreted on the basis of the energetic requirements for the reactions under consideration. H2O? reacts from different electronic states in yielding OH? on the one hand and O? on the other. The energy partitioning associated with reaction (2) suggests that the neutral productions 2H' rather than H2. The kinetic energy losses accompanying excitation and kinetic energy releases upon fragmentation were similar for the corresponding reactions of the sulfur and oxygen-containing ions indicating related mechanisms in the two sets of reactions.  相似文献   

13.
Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.  相似文献   

14.
This work deals with the isothermal pyrolysis of Pine and Beech wood samples and kinetic studies, using the thermo-analytical technique, at five different operating temperatures. Pyrolysis processes were investigated by using the distributed apparent activation energy model, which involves the complex mixture of different continuous distribution functions. It was found that decomposition processes of wood pseudo-components take place in different conversion areas during entire pyrolyses, whereby these areas, as well as the changes in apparent activation energy (E a) values, are not the same for softwood and hardwood samples. Bulk density (Bden) and energy density (ED) considerations have shown that both biomass samples suffer from low Bden and ED values. It was concluded that pyrolysis can be used as a means of decreasing transportation costs of wood biomass materials, thus increasing energy density. The “pseudo” kinetic compensation effect was identified, which arises from kinetic model variation and wood species variation. In the current extensive study, it was concluded that primary pyrolysis refers to decomposition reactions of any of three major constituents of the considered wood samples. Also, it was established that primary reactions may proceed in parallel with simultaneous decomposition of lignin, hemicelluloses and cellulose in the different regions of wood samples, depending on the operating temperature. It was established that endothermic effects dominate, which are characterized with devolatilization and formation of volatile products. It has been suggested that the endothermic behavior that arises from pyrolyses of considered samples may indicate the endothermic depolymerization sequence of cellulose structures.  相似文献   

15.
Liquid organic peroxides (LOPs) have been widely used as initiators of polymerization, hardening, or cross-linking agents. We evaluated a beneficial kinetic model to acquire accurate thermokinetic parameters to help preventing runaway reactions, fires or explosions in the process environment. Differential scanning calorimetry was used to assess the kinetic parameters, such as kinetic model, reaction order, heat of reaction (??H d), activation energy (E a), frequency factor (lnk 0), etc. The non-isothermal and isothermal kinetic models were compared to determine the validity of the kinetic model, and then applied to the thermal hazard assessment of commercial package contaminated with LOPs. Simulations of a 0.5-L Dewar vessel and 25-kg commercial package were performed. We focused on the thermal stability of different liquid system properties for LOPs. From the results, the optimal conditions were determined for avoiding violent heat effects that can cause a runaway reaction in storage, transportation, and manufacturing.  相似文献   

16.
The steam gasification of coal chars derived from three different ranks of typical Chinese coals was studied in a pressurized fixed-bed differential reactor at elevated pressure (up to 2.0 MPa). Three mathematical models [volumetric model (VM), grain model (GM), and random pore model (RPM)] for the gasification kinetics of different chars were validated, through which the kinetic parameters were obtained and discussed. The results show that the evolution trend of the coal char gasification rate with carbon conversion differs from coal ranks and has little change with pressure and temperature. The pressurized gasification process of the Shenmu sub-bituminous coal char (SM char) and the Jingcheng anthracite char (JC char) can be well-predicted by the RPM, while that of the Huolinhe lignite char can be better described by the VM. The pressure has little effect on the options of the reaction kinetic models for the three chars. The kinetic parameter E is almost a constant independent of pressure, while k 0 changes with pressure, and it seems that k 0 would be almost a constant over 1.0 MPa for SM and JC chars. The reaction order decreases with increasing the total system pressure and differs from different coal types.  相似文献   

17.
The kinetics of hydroformylation of vinyl acetate using [Rh(CO)2Cl]2 complex catalyst has been investigated at 80 °C. The trends are quite different from those observed for the HRh(CO)(PPh3)3-catalyzed systems. The dependence of the rate on P(H2) and P(CO) was found to be linear, whereas the dependence of rate on vinyl acetate concentration was found to be first order, followed by substrate-inhibited kinetics at higher olefin concentrations. The rate dependence on the catalyst concentration was found to be fractional order. A rate equation has been proposed and kinetic parameters evaluated.  相似文献   

18.
The simple reduction of a number of alkenes and alkynes was performed with a typical reaction time of 20?min using a copper-cobalt catalytic system. The reduction did not cleave benzyl protecting groups which are usually vulnerable to catalytic hydrogenation reactions. The catalyst can be prepared in situ by reduction of the inexpensive precursor salts CuSO4 and CoCl2 with NaBH4. Sodium borohydride was also used as an easily handled hydrogen source for the catalytic reductions. No pressure, heating or inert atmosphere is required and purification/catalyst removal is achieved using extraction procedures, making this approach simple and efficient.  相似文献   

19.
The kinetic parameters of the complex reaction between phenol and formaldehyde in the presence of sodium hydroxide (NaOH) have been obtained by differential scanning calorimetry (DSC). The two dominant reactions appear to be addition of formaldehyde to phenol with formation of o-hydroxymethyl-phenol and subsequent condensation of the latter. For both reactions, the activation energy (Ea), reaction order and rate constants at different temperatures have been determined. Ea for addition changes from 23·7 to 19·3 kcal mole?1 and for condensation from 22·9 to 19·1 kcal mole?1 when the amount of NaOH is increased from 0·25 to 1·00 per cent. The reaction order for addition is 2 and for condensation 1. Thus DSC appears useful for studying the kinetics of more complex polymerization reactions.  相似文献   

20.
An experimental procedure has been developed for constructing p i –T diagrams (partial vapor pressure of the ligand-forming component–temperature) for luminescent metal complexes with symmetric organic ligands. The partial 8-hydroxyquinoline vapor pressure–temperature diagram has been constructed for tris(8-hydroxyquinoline)gallium electrophosphor (Gaq3) in the temperature range 300–617 K at 8-hydroxyquinoline vapor pressures 10–3–104 Pa, where the homogeneity ranges of different Gaq3 polymorphs have been determined. Structure-sensitive properties of crystalline materials can be tailored by changing synthesis conditions within the homogeneity range of a phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号