首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The automatic optimization of flow control devices is a delicate issue because of the drastic computational time related to unsteady high‐fidelity flow analyses and the possible multimodality of the objective function. Thus, we experiment in this article the use of kriging‐based algorithms to optimize flow control parameters because these methods have shown their efficiency for global optimization at moderate cost. Navier–Stokes simulations, carried out for different control parameters, are used to build iteratively a kriging model. At each step, a statistical analysis is performed to enrich the model with new simulation results by exploring the most promising areas, until optimal flow control parameters are found. This approach is validated and demonstrated on two problems, including comparisons with similar studies: the control of the flow around an oscillatory rotating cylinder and the reduction of the intensity of a shock wave for a transonic airfoil by adding a bump to the airfoil profile. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We introduce an approach for controlling jet mixing that combines direct numerical simulation of an incompressible jet flow with stochastic optimization procedures. The jet is excited with helical and combined helical and axial actuations at the orifice. An objective function that measures the spreading of the jet evaluates the performance of the actuation parameters. The optimization procedure searches for the best actuation by automatically varying the parameters and calculating their objective function value. Solutions that lead to a pronounced spreading of the jet are found within reasonable time, although the evaluation of the objective function, the DNS of the jet, is expensive. For a jet flow at low Reynolds number the performance of different search algorithms (simulated annealing and evolution strategies) is evaluated. We compare various objective functions based on radial velocity and the concentration of a passive scalar, including functions that penalize actuation with high amplitudes. We find that a combined axial and helical actuation is much more efficient with respect to jet mixing than a helical actuation alone.  相似文献   

3.
本文介绍了一种基于主动流动控制技术的射流矢量偏转新方法和控制思路。通过在主射流出口两侧加装斜置扩张固壁板来降低射流两侧与固壁边界间的流体压力,将射流偏转由"不敏感-难控"转变成"敏感-易控",再在固壁板布置自行研制的斜出口合成射流激励器对主射流进行比例偏转控制。实验结果表明,射流最大偏转角可达15°。此外还研究了激励位置角度、激励频率、激励电压不同工作参数对射流矢量偏转控制的影响,实现了主射流偏转角的比例控制。当合成射流与主射流动量比为1∶43时,主射流偏转角可达13°,合成射流激励器消耗的能量为1.5W,初步实现了以小的能量消耗获取高的控制效益。  相似文献   

4.
A numerical simulation based on the Large eddy simulation method is carried out on the near wake flow behind a 25° slant angle Ahmed body to analyze and establish a new method to control the near wake flow. An active flow control using a new unsteady jet derived from the traditional synthetic jet is applied to reduce the aerodynamic drag. The control devices are distributed along the separation edges on the rear part of the body. Their effects on the near wake and the rear body by influencing the flow topology and the static pressure distribution are examined respectively. The control frequency of the jet as the key forcing parameter is taken into consideration as well. The different actuation set-ups lead to a max drag reduction of up to 13.6%, which demonstrates a good correlation with the static pressure distribution at the rear end of the body.  相似文献   

5.
A primary jet vectoring using synthetic jet actuators with different exit con- figurations was investigated,and the main physical factors influencing jet vectoring were analyzed and summarized.The physical factors of the pressure difference,the location and area of the lower pressure region,the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle.Three characteristic parameters of the syn- thetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region,the area of the lower pressure region,and the entrainment ratio of the synthetic jet flow to primary jet flow.The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum.Based upon analyzing the physical factors of jet vectoring control with syn- thetic jets,the source variables of the physical factors were established.A preparatory control model of jet vectoring using synthetic jet actuator was presented,and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values,and it indicates the optimal actuator is taking full advantage of the regulating function.  相似文献   

6.
为了深入了解湍流流动机理以及湍流拟序结构发现过程的影响因素,本文采用大涡模拟方法对不同入口射流伴流速度比的平面湍射流流动进行了数值模拟。采用分步投影法求解动量方程,亚格子项采用标准Smagorinsky亚格子模式模拟,压力泊松方程采用修正的循环消去法快速求解,空间方程采用二阶精度的差分格式,在时间方向上采用二阶精度的显式差分格式。模拟结果给出了平面射流中湍流拟序结构的瞬态发展演变过程,分析了入口速度比对射流拟序结构发展演化过程及宏观流场形态的影响。为进一步研究射流拟序结构及其在湍流流动中的作用提供了基础。  相似文献   

7.
Fluid–structure interaction (FSI) phenomena are of significant importance in several engineering fields. Recently developed active flow control devices regulate the FSI in order to control the dynamic response of the structure that is involved. As a first step to use active control, computationally efficient reduced-order models are required. The reduced-order models must be able to predict the nonlinear structural dynamic response given an incoming flow condition. This paper presents a computationally efficient method for the construction of a hybrid reduced-order model for FSI problems based on data obtained through high-fidelity numerical simulations. The model splits the force and the structural dynamic response into two separate blocks and uses model reduction techniques to account for the flow field information. The current model is tested on a vibrating rigid cylinder submerged in a flow at low Reynolds number regime.  相似文献   

8.
An underexpanded jet issuing from a convergent slot and blowing over a surface of convex streamwise curvature was studied experimentally. The jet was confined between side walls, with the slot aspect ratio varying between 40 and 6, but tests showed that in the area of interest close to the slot the flow was effectively two-dimensional. The ratio of slot width to the radius of curvature of the downstream surface varied between 0.05 and 0.33. The main techniques used were Schlieren and shadowgraph to show the jet structure, and surface flow visualization which revealed areas of separation and reattachment. Surface static pressures were also measured on the curved surface. The curved jet proved to have a shock cell structure similar to that of a plane jet. However, the cell structure disappeared more rapidly as the outer shear layer grew more quickly due to the destabilizing effect of the curvature on the turbulence in the shear layer. Even at modest upstream jet pressures, a separated region on the Coanda surface became evident. This region was characterized by a stagnant constant pressure part followed by a region of strongly reversed flow before reattachment took place. The separation was caused by the compression at the end of the first shock cell, with reattachment taking place where expansion in the second cell started. The separated region grew rapidly as the upstream pressure was increased, until, finally, reattachment failed to occur and the jet suddenly broke away from the surface. This work is related to studies of the Coanda flare, where the jet is axisymmetric. The high level of turbulence causes rapid entrainment of air and so gives us clean combustion. However there should be more general application to devices that use the Coanda effect, varying from fluidic devices to blown jet flaps on wings.  相似文献   

9.
This work presents a parametric study and optimization of a single impinging jet with cross flow to enhance heat transfer with two design variables. The fluid flow and heat transfer have been analyzed using three-dimensional compressible Reynolds-averaged Navier–Stokes equations with a uniform heat flux condition being applied to the impingement plate. The aspect ratio of the elliptic jet hole and the angle of inclination of the jet nozzle are chosen as the two design variables, and the area-averaged Nusselt number on a limited target plate is set as the objective function. The effects of the design variables on the heat transfer performance have been evaluated, and the objective function has been found to be more sensitive to the angle of inclination of the jet nozzle than to the aspect ratio of the elliptic jet hole. The optimization has been performed by using the radial basis neural network model. Through the optimization, the area-averaged Nusselt number increased by 7.89% compared to that under the reference geometry.  相似文献   

10.
The supersonic combustion RAM jet (SCRAM jet) engine is expected to be used in next-generation space planes and hypersonic airliners. To develop the engine, stabilized combustion in a supersonic flow field must be attained even though the residence time of flow is extremely short. A mixing process for breathed air and fuel injected into the supersonic flow field is therefore one of the most important design problems. Because the flow inside the SCRAM jet engine has high enthalpy, an experimental facility is required to produce the high-enthalpy flow field. In this study, a detonation-driven shock tunnel was built to produce a high-enthalpy flow, and a model SCRAM jet engine equipped with a backward-facing step was installed in the test section of the facility to visualize flow fields using a color schlieren technique and high-speed video camera. The fuel was injected perpendicularly to a Mach 3 flow behind the backward-facing step. The height of the step, the injection distance and injection pressure were varied to investigate the effects of the step on air/fuel mixing characteristics. The results show that the recirculation region increases as the fuel injection pressure increases. For injection behind the backward-facing step, mixing efficiency is much higher than with a flat plate. Also, the injection position has a significant influence on the size of the recirculation region generated behind the backward-facing step. The schlieren photograph and pressure histories measured on the bottom wall of the SCRAM jet engine model show that the fuel was ignited behind the step.Communicated by K. Takayama PACS 47.40.Ki  相似文献   

11.
张鑫  王勋年 《力学学报》2023,55(2):285-298
正弦交流介质阻挡放电等离子体流动控制技术是基于等离子体激励的主动流动控制技术,具有响应时间短、结构简单、能耗低、不需要额外气源装置等优点,在飞行器增升减阻、抑振降噪、助燃防冰等方面具有广阔的应用前景.针对“激励器消耗的大部分能量尚未被挖掘利用、诱导流场的完整演化过程尚未完全掌握、诱导流场的演化机制尚不明确”这三方面问题,本文首先从激励器诱导流场的空间结构、时空演化过程、演化机制三个方面回顾总结了激励器诱导流场的研究进展.在诱导流场空间结构方面,发现了高电压激励下诱导射流的湍流特性,辨析了壁面拟序结构与无量纲激励参数之间的关联机制;从激励器诱导声能方面挖掘出了激励器潜在的能量,发现了“等离子体诱导超声波与诱导声流”的新现象,提出了声激励机制;在时空演化过程方面,阐明了激励器诱导流场从薄型壁射流发展为“拱形”射流、再演变为启动涡,最终形成准定常射流的完整演化过程;在演化机制方面,结合声学特性提出了以“升推”为主的诱导流场演化机制.其次,围绕激励器诱导流场,进一步凝练出下一步研究重点,为突破等离子体流动控制技术瓶颈,打通“概念创新—技术突破—演示验证”的创新链路,实现工程应用提供支撑.  相似文献   

12.
This study aims to understand the underlying physics of vortex-enhanced mixing through active and passive flow control methods. To find a best flow control method that enhances turbulent mixing through the generation of streamwise vortices, an experimental investigation was carried out to compare active and passive flow control methods of an incompressible axisymmetric jet. For active flow control, the lip of the circular jet was equipped with a single small flap deflected away from the jet stream at an angle of 30° to the jet axis. The flap incorporated a flow control slot through which steady and oscillatory suction were implemented. The active flow control methods require power input to the suction devices. For passive flow control, the lip of the circular jet was equipped with a single small delta tab deflected into the jet stream at an angle of 30° to the jet axis. The chord lengths of the flap and delta tab were one-sixth of the jet diameter. The momentum of jet increased in the case of active flow control by entraining the ambient fluid, whereas momentum decreased in the case of passive flow control. The effect of steady suction saturated for volumetric suction coefficient values greater than 0.82 %. The strength of streamwise vortices generated by the flap were greater than those generated by the delta tab. Steady suction produced positive pressures just downstream of the flow control slot in the central portion of the flap and negative pressures at the flap edges. Oscillatory suction was highly dependent on dimensionless frequency (F +) based on the distance from the flow control slot to the flap trailing edge; the pressures on the central portion of the flap increased for F + ≤ 0.11 and then decreased for greater F +; finally attained negative pressures at F + = 0.44. The increase in jet momentum and turbulence intensity, combined with the induced streamwise vorticity, makes steady suction a potential concept for increasing propulsion efficiency through vortex-enhanced mixing. The flow control methods modify the jet flow, which in turn would alter the jet noise spectra.  相似文献   

13.
Fluid viscous dampers are extensively adopted as efficient and cheap energy dissipation devices in structural seismic protection. If we consider the usefulness of these passive control devices, the exact recognition of their mechanical behavior is of outstanding importance to provide a reliable support to design a very efficient protection strategy. In scientific and technical applications, many different constitutive models have been proposed and adopted till now to represent fluid viscous dampers, with different levels of complexity and accuracy. This paper focuses on parameter identification of fluid viscous dampers, comparing different existing literature models, with the aim to recognize the ability of these models to match experimental loops under different test specimens. The identification scheme is developed evaluating the experimental and the analytical values of the forces experienced by the device under investigation. The experimental force is recorded during the dynamic test, while the analytical one is obtained by applying a displacement time history to the candidate mechanical law. The identification procedure furnishes the device mechanical parameters by minimizing a suitable objective function, which represents a measure of the difference between the analytical and experimental forces. To solve the optimization problem, the particle swarm optimization is adopted, and the results obtained under various test conditions are shown. Some considerations about the agreement of different models with experimental data are furnished, and the sensitivity of identified parameters of analyzed models against the frequency excitation is evaluated and discussed.  相似文献   

14.
合成射流对失速状态下翼型大分离流动控制的试验研究   总被引:1,自引:0,他引:1  
为研究低速状态合成射流在抑制翼型气流分离和推迟失速方面的控制机理, 开展了NACA0021 翼型失速特性射流控制的风洞试验研究. 通过系统性的模型测力、翼型瞬态流场粒子图像测速和边界层速度测定的对比试验, 深入探索了合成射流各参数对翼型失速特性控制效果的影响规律. 试验结果表明射流偏角在翼型升力和失速迎角控制方面的效果对射流动量系数较为敏感: 当动量系数较大时, 近切向射流的控制效果更好. 射流动量系数为0.033 时, 偏角30°的射流使得翼型升力系数峰值提高23.56%, 失速迎角增大5°; 而动量系数较小时, 偏角较大的射流能够获得最佳控制效果. 射流动量系数为0.0026 时, 法向射流对翼型最大升力系数控制效果最好(提高9.2%).   相似文献   

15.
Aerodynamic shape optimization technology is presented, using an efficient domain element parameterization approach. This provides a method that allows geometries to be parameterized at various levels, ranging from gross three‐dimensional planform alterations to detailed local surface changes. Design parameters control the domain element point locations and, through efficient global interpolation functions, deform both the surface geometry and corresponding computational fluid dynamics volume mesh, in a fast, high quality, and robust fashion. This results in total independence from the mesh type (structured or unstructured), and optimization independence from the flow‐solver is achieved by obtaining gradient information for an advanced gradient‐based optimizer by finite‐differences. Hence, the optimization tool can be used in conjunction with any flow‐solver and/or mesh generator. Results have been presented recently for two‐dimensional aerofoil cases, and shown impressive results; drag reductions of up to 45% were demonstrated using only 22 active design parameters. This paper presents the extension of these methods to three dimensions, with results for highly constrained optimization of a modern aircraft wing in transonic cruise. The optimization uses combined global and local parameters, giving 388 design variables, and produces a shock‐free geometry with an 18% reduction in drag, with the added advantage of significantly reduced root moments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows.  相似文献   

17.
A novel in-line miniature force transducer is developed for direct measurements of the net aerodynamic forces and moments on a bluff body. The force transducers are integrated into each of the eight mounting wires that are utilized for suspension of an axisymmetric model in a wind tunnel having minimal wake interference. The aerodynamic forces and moments on the model are altered by induced active local attachment of the separated base flow. Fluidic control is effected by an array of four integrated aft-facing synthetic jet actuators that emanate from narrow, azimuthally segmented slots, equally distributed around the perimeter of the circular tail end. The jet orifices are embedded within a small backward-facing step that extends into a Coanda surface. The altered flow dynamics associated with both quasi-steady and transitory asymmetric activation of the flow control effect is characterized by direct force and PIV measurements.  相似文献   

18.
The problem of an axisymmetric gas flow in a supersonic nozzle and in the jet escaping from the nozzle to a quiescent gas is solved within the framework of Navier-Stokes equations. The calculated pressure distribution is compared with that measured in the jet by a Pitot tube. The influence of the jet pressure ratio, Reynolds number, and half-angle of the supersonic part of the nozzle on nozzle flow and jet flow parameters is studied. It is shown that the distributions of gas-dynamic parameters at the nozzle exit are nonuniform, which affects the jet flow. The flow pattern for an overexpanded jet shows that jet formation begins inside the nozzle because of boundary-layer displacement from the nozzle walls. This result cannot be obtained with the inviscid formulation of the problem.  相似文献   

19.
超声速钝体逆向喷流减阻的数值模拟研究   总被引:1,自引:0,他引:1  
为研究逆向喷流技术对超声速钝体减阻的影响,采用标准k-ε湍流模型,通过求解二维Navier-Stokes方程对超声速球头体逆向冷喷流流场进行了数值模拟,并着重分析了喷口总压、喷口尺寸对流场模态和减阻效果的影响。计算结果显示:随着喷流总压的变化,流场可出现两种流动模态,即长射流穿透模态和短射流穿透模态;喷流能使球头体受到的阻力明显减小;存在最大减阻临界喷流总压值(在所研究参数范围内最大减阻可达51.1%);在其它喷流物理参数不变时,随着喷口尺寸的增大,同一流动模态下的减阻效果下降。本文的研究对超声速钝体减阻技术在工程上的应用具有一定的参考价值。  相似文献   

20.
We use the simple context of Navier-Stokes flow in a channel with a bump to examine problems caused by the insensitivity of functionals with respect to design parameters, the inconsistency of functional gradient approximations, and the appearance of spurious minima in discretized functionals. We discuss how regularization can help overcome these problems. Along the way, we compare the discretize-then-differentiate and differentiate-then-discretize approaches to optimization, especially as they relate to the issue of inconsistent functional gradients. We close with a discussion of the implications that our observations have on more practical flow control and optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号