首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A kinetic study was made of the liquid-phase oxidation of 1.2.4.5-tetramethylbenzene in polar solvents. It was shown that the catalytic activity of the cobalt salt catalysts used varies as the hydrocarbon concentration decreases, a finding attributed to the anionic effects in the catalyst. The catalytic activity of the cobaltous salts of nicotinic and isonicotinic acid was found to be high at low durene concentrations. Of the bromine derivatives studied as promotors, N-bromoacetamide was found to be the most effective. The effect of the polar solvent on the kinetics of the oxidation of durene was also studied in media containing acetic acid, acetic anhydride and mixtures thereof. The relationship between the rate constant (k) in acetic anhydride and the rate constant (k 0) in acetic acid is found to be the following: $$\lg k = \lg k_0 + 24.59\frac{{\varepsilon - 1}}{{2\varepsilon + 1}}$$ A tentative mechanism of the oxidation steps is advanced to explain the higher values of the rate constant in acetic anhydride.  相似文献   

2.
A new magnetic oxidation catalyst was prepared using immobilization of tungstophosphoric acid on poly(N-vinylimidazole) entrapped magnetic nanozeolite and characterized by FTIR, TGA, XRD, SEM, TEM, EDX, VSM, and ICP-OES. The resulting heterogeneous catalyst displays high catalytic performance for selective oxidation of alcohols compared to the other catalysts. The catalyst could be reused eight times without any loss of catalytic activity.  相似文献   

3.
《Comptes Rendus Chimie》2017,20(8):818-826
An efficient heterogeneous acid catalyst was developed using cenospheres, a byproduct of coal-fired thermal power plants by the method of wet impregnation. Catalyst characterization was carried out using various analytical techniques, namely, Fourier transform infrared, X-ray diffraction, field emission gun scanning electron microscopy and Brunauer–Emmett–Teller surface area and surface acidity analysis. The characterization revealed the excellent catalytic activity of the catalyst for the esterification reaction of n-octanol and acetic acid. Various reaction parameters, namely, catalyst loading, a molar ratio of alcohol/acid and reaction temperature were evaluated and optimized by response surface methodology using the Box–Behnken model. The response surface methodology model equations corresponding to the conversion of acid and % yield of ester were developed. The model well predicted the optimal reaction conditions, which were validated experimentally with good agreement. The excellent catalytic performance was observed in the esterification reaction with high conversion of acid (95.34%) and high yield of n-octyl acetate (94.81%). Reusability study of the catalyst showed that the catalyst could be used efficiently up to three reaction cycles. This study explores the use of cenospheres to prepare a solid acid catalyst for the industrially important esterification reactions.  相似文献   

4.
The catalytic properties of a sample of 20% V2O5/TiO2 and its derivative, 12% V2O5/TiO2, which was obtained by the treatment of the catalyst with nitric acid and did not contain bulk V2O5 species, were compared. In spite of a significant difference in the vanadium contents, the activity of both of the samples in the process of the gas-phase aerobic oxidation of ethanol to acetaldehyde and acetic acid was found to be the same. It was hypothesized that a monolayer of vanadium oxide on the surface of TiO2 made the main contribution to the catalytic activity.  相似文献   

5.
Cross-linked polystyrene-supported aluminium triflate [Ps-Al(OTf)3] has been shown to be a mild, efficient, and chemoselective heterogeneous Lewis acid catalyst for acetylation of aldehydes with acetic anhydride. The catalyst can be recovered simply and reused efficiently at least five times without any noticeable loss of catalytic activity.  相似文献   

6.
The catalytic activity of Mn(III)salophen complex supported on polystyrene-bound imidazole, [Mn(salophen)Cl-PSI], was studied in the oxidation of primary aromatic amines in acetonitrile/water, using sodium periodate as an oxygen source. Amines were oxidized efficiently to their corresponding azo derivatives in the presence of this catalyst. The heterogeneous catalyst showed high stability and reusability in the oxidation reactions and could be reused several times without loss of its activity. The effect of different solvents was studied in the oxidation of p-toluidine and CH3CN/H2O was chosen as the solvent.  相似文献   

7.
以氯化铜、钼酸铵、苯酐、氯化铵、尿素和NaY分子筛为原料,采用苯酐-尿素法制备了酞菁铜/分子筛复合物CuPc/Y.采用等体积浸渍法将金属钯担载在CuPc/Y上制备了Pd-CuPc/Y催化剂,并在醋酸水溶液中考察了其催化甲烷选择氧化合成甲醇反应的性能,结果表明,催化性能与反应温度、溶剂中CH3COOH与H2O的混合比例、对苯醌用量、反应时间等因素有关,在0.5%Pd-0.5%CuPc/Y添加量0.5 g、CH3COOH与H2O体积比4∶1、对苯醌用量1 000 μmol、反应时间3 h、反应温度150 ℃的条件下,甲醇的最佳生成量为1 840 μmol.Pd-CuPc/Y催化剂可以多次循环使用,但由于催化剂流失和催化剂表面的钯粒子聚集的原因,循环使用后的催化剂催化活性有所下降.Pd-CuPc/Y在醋酸溶液中催化甲烷选择氧化合成甲醇是亲电取代反应和活性氧物种氧化共同作用的结果.  相似文献   

8.
In this work, the catalytic activity of high-valent tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate, [VIV(TPP)(OTf)2], in the nucleophilic ring-opening of epoxides is reported. This new V(IV) catalyst was used as an efficient catalyst for alcoholysis with primary (methanol, ethanol and n-propanol), secondary (iso-propanol) and tertiary alcohols (tert-butanol), hydrolysis and acetolysis of epoxides with acetic acid and also for the conversion of epoxides to 1,2-diacetates with acetic anhydride, conversion of epoxides to thiiranes with ammonium thiocyanate and thiourea, and for conversion of epoxides to acetonides with acetone. The catalyst was reused several times without loss of its activity.  相似文献   

9.
Manganese(III) tetrakis(p-sulfonatophenyl)porphyrin was successfully bound to silica modified with zirconium. The heterogeneous catalyst, MnTPPS-silica, was characterized by SEM, FT-IR and diffuse reflectance UV-Vis spectroscopic techniques. MnTPPS-silica catalyzes alkene epoxidation and alkanes hydroxylation with sodium periodate under agitation with magnetic stirring and ultrasonic irradiation in the presence of imidazole as an axial ligand. This catalytic system shows a good activity in the epoxidation of linear alkenes. Alkyl aromatic and cycloalkanes were efficiently oxidized to their corresponding alcohols and ketones in the presence of this catalyst. This new heterogeneous catalyst is of high stability and reusability in the oxidation reactions and can be reused several times without loss of its activity.  相似文献   

10.
采用二三种不同孔结构的Si02制备了Pd-SiW12/SiO2催化剂,通过x射线衍射、N2物理吸附、吡啶吸附红外光谱以及H2脉冲化学吸附对催化剂进行了表征,并考察了Pd-SiW12/SiO2催化剂上乙烯直接氧化制乙酸反应性能.结果表明,以孔径较大的粗孔硅胶为载体制备的Pd-SiW12/SiO2催化剂显示出最高的催化活性,乙酸收率为145.2g/(L·h).这是由于Pd在粗孔硅胶载体表面良好的分散使其具有较高的催化活性.  相似文献   

11.
The identification of the contribution of different surface sites to the catalytic activity of a catalyst nanoparticle is one of the most challenging issues in the fundamental studies of heterogeneous catalysis. We herein demonstrate an effective strategy of using a series of uniform cubic Cu2O nanocrystals with different sizes to identify the intrinsic activity and contributions of face and edge sites in the catalysis of CO oxidation by a combination of reaction kinetics analysis and DFT calculations. Cu2O nanocrystals undergo in situ surface oxidation forming CuO thin films during CO oxidation. As the average size of the cubic Cu2O nanocrystals decreases from 1029 nm to 34 nm, the dominant active sites contributing to the catalytic activity switch from face sites to edge sites. These results reveal the interplay between the intrinsic catalytic activity and the density of individual types of surface sites on a catalyst nanoparticle in determining their contributions to the catalytic activity.  相似文献   

12.
Three kinds of Ru/CeO2 catalysts were prepared. The mobility of the oxygen on Ru and their catalytic activity in the wet oxidation of acetic acid was investigated. Ru was present in the form of RuO2, and TPR experiment showed that the reaction, RuO2 + 2H2 Ru + 2H2O, took place in different temperature ranges depending upon the kind of the catalysts. The catalyst with easily reducible oxygen on Ru had high activity in wet oxidation, and the importance of the release of oxygen from Ru to the reactant was suggested.  相似文献   

13.
The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/ support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.  相似文献   

14.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

15.
A highly reduced Keggin-type heteropolymolybdophosphate, H3PMo12O40(Py), which was formed by the heat-treatment of pyridinium salt of H3PMo12O40, can catalyze the propane oxidation to acrylic acid and acetic acid selectively. We propose a possible reaction mechanism for alkane oxidation, where protons and electrons on the reduced H3PMo12O40 catalyst cooperate for activating molecular oxygen to form electrophilic oxygen species for alkane oxidation. It is also reported that Anderson-type heteropolycompounds linked with vanadyl cations VO2+ were able to be synthesized by hydrothermal reaction and showed good catalytic activity for the ethene oxidation to acetic acid.  相似文献   

16.
A new heterogeneous Brønsted solid acid catalyst was prepared by tandem post-functionalization of MIL-101(Cr) and utilized for acetic acid esterification and alcoholysis of epoxides under solvent-free conditions. First, MIL-101(Cr) was functionalized with pyrazine to achieve MIL-101(Cr)-Pyz. Afterwards, the nucleophilic reaction of MIL-101(Cr)-Pyz with 1,3-propane sultone and next acidification with diluted sulfuric acid gave MIL-101(Cr)-Pyz-RSO3H Brønsted solid acid catalyst. Various characterization methods such as Fourier transformation infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), elemental analysis (CHNS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersiveX-ray(EDX) spectroscopy, thermal analysis (TGA/DTA), acid–base titration, and N2 adsorption/desorption analysis were employed to fully characterize the prepared catalyst. The catalyst showed high activity compared to unmodified MIL-101(Cr) in both catalytic acetic acid esterification and alcoholysis of epoxides. It can also be readily isolated from the reaction mixture and reused three times without major decrease in its activity.  相似文献   

17.
The catalytic activity of magnetically recoverable MIL‐101 was investigated in the oxidation of alkenes to carboxylic acids and cyanosilylation of aldehydes. MIL‐101 was treated with Fe3O4 and the prepared catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, N2 adsorption measurements, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and inductively coupled plasma analysis. The catalytic active sites in this heterogeneous catalyst are Cr3+ nodes of the MIL‐101 framework. This heterogeneous catalyst has the advantages of excellent yields, short reaction times and reusability several times without significant decrease in its initial activity and stability in both oxidation and cyanosilylation reactions. Its magnetic property allows its easy separation using an external magnetic field.  相似文献   

18.
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.  相似文献   

19.
ZrxCe1-xO2催化剂催化湿式氧化乙酸的活性研究   总被引:1,自引:0,他引:1  
王建兵  祝万鹏  杨少霞  周云瑞 《化学学报》2006,64(15):1537-1542
采用共沉淀法制备了ZrxCe1-xO2催化剂, 利用BET, XRD和XPS对其进行了表征, 并研究了催化剂催化湿式氧化乙酸的活性. 结果表明: Zr和Ce摩尔比为1∶9的催化剂催化湿式氧化乙酸时具有最好的活性, 当乙酸溶液的初始化学需氧量(COD)为5000 mg/L, 反应温度为230 ℃, 压力为5 MPa时, 120 min后, COD的去除率为76% . 催化剂具有良好的活性是因为在CeO2中加入Zr能够增大催化剂的比表面积和表面缺陷氧的含量, 并最终加快了HO2•自由基的产生, 从而提高了催化剂的活性.  相似文献   

20.
The catalytic wet oxidation process is the most attractive process for small-scale hydrogen sulfide (H2S) removal from natural gas. The catalytic wet oxidation process is anticipated to be cost effective and simple so that it can be used for treating sour gases containing small amounts of H2S and can be easily operated even in isolated sites. The development of effective catalyst is the key technology in the wet catalytic oxidation of H2S. The scale of operation for the process has to be flexible so its use will not be limited by the flow rates of the gas to be treated. The heterogeneous catalytic wet oxidation of H2S has been attempted on activated carbons, but the H2S removal capacity still shows the low removal efficiency. The catalytic wet oxidation of H2S was studied over Fe/MgO for an effective removal of H2S. In order to develop a sulfur removal technology, one has to know what surface species of catalyst are the most active. This article discusses the following systematic studies: (i) the catalytic preparation to disperse Fe metal well on MgO support for enhancing H2S removal capacity, (ii) the effect of the catalytic morphology on the activity of Fe/MgO for the H2S wet oxidation, (iii) the influence of precursor and support on the activity of Fe/MgO for catalytic wet oxidation of H2S to sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号