首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of phosphorus ylide Ph3PCHC(O)C6H4Cl (Y1) with HgX2 (X = Cl, Br and I) and ylide (p-tolyl)3PCHC(O)CH3 (Y2) with HgI2 in equimolar ratios using methanol as solvent leads to binuclear products. The bridge-splitting reaction of binuclear complex [(Y1) · HgCl2]2 by DMSO yields a mononuclear complex containing DMSO as ligand. O-coordination of DMSO is revealed by single crystal X-ray analysis in mononuclear complex of [(Y1) · HgCl2 · DMSO]. C-coordination of ylides is confirmed by X-ray structure of binuclear complex [(Y2) · HgI2]2. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR. Theoretical studies on mercury(II) complexes of Y1 show that formation of mononuclear complexes in DMSO solution in which DMSO acts as a ligand, energetically is more favorable than that of binuclear complexes.  相似文献   

2.
《Comptes Rendus Chimie》2014,17(5):490-495
A new complex of [Ni3(dcp)2(H2O)10] (1) (H3dcp = 3,5-pyrazoledicarboxylic acid) has been synthesized from H3dcp and Ni(NO3)2·6H2O by hydrothermal reaction. Complex 1 has the discrete trinuclear structure. Three Ni(II) ions are bridged by two dcp3− ligands, with 10 coordinated water molecules as terminal ligands. The molecules of [Ni3(dcp)2(H2O)10] extend into three-dimensional supramolecular architectures by intermolecular O–H···O hydrogen bonds as well as π-π stacking interactions. Magnetic susceptibility measurement shows that a weak antiferromagnetic interaction is operative between nickel(II) ions and an excellent simulation of the experimental data gives D = 5.27 cm−1, J = −2.19 cm−1 and g = 2.05.  相似文献   

3.
《Comptes Rendus Chimie》2014,17(5):477-483
The ligand Hbpq = N-(8-quinolyl)pyridine-2-carboxamide) has been prepared using tetrabutylammonium bromide (TBAB) as an environmentally friendly reaction medium. Four new complexes of this ligand, [M(bpq)X] (M = Cu(II), X = SCN̄ (1), N3̄ (2); M = Ni(II), X = SCN̄ (3), N3̄ (4)), have also been synthesized and fully characterized. The crystal and molecular structures of [Cu(bpq)(NCS)]n (1) have been determined by X-ray crystallography. Copper(II) ion adopts a distorted square pyramidal (4 + 1) coordination in this complex. Hbpq ligand shows a strong emission at 500 nm in acetonitrile solution. The emission is quenched in the presence of copper(II) acetate, apparently because of the formation of [Cu(L)(OAc)(H2O)] complex. Introduction of nitric oxide (NO) into the acetonitrile solution at room temperature induces an increase in the fluorescence intensity, presumably due to the reduction of Cu(II) to Cu(I). This process is reversible and can form a basis for direct detection of NO.  相似文献   

4.
Thiosemicarbazones of 2-amino-5-chlorobenzophenone and 3-aminobenzophenone(L1-L4) have been synthesized and their Cu(Ⅱ) complexes(1-4) were afforded via coordination with cupric chloride.All these compounds were characterized by UV-vis and IR spectroscopy together with CHN elemental analysis.NMR spectroscopy was also applied to characterize the ligands.In vitro chohnesterase inhibitory assays for the complexes(1-4) showed IC50 values less than 10μmol/L,with complex 1 exhibiting the most activity,IC50=2.15μmol/L and 2.16μmol/L for AChE and BuChE,respectively. Molecular modeling simulation revealed the binding interaction template for complex 1 with the AChE and BuChE receptors.In DPPH assay,the complexes also showed more in vitro antioxidant activities in comparison to their parent ligands.  相似文献   

5.
《Polyhedron》2007,26(9-11):2142-2146
In this work, 4-pyridyl-phenylanthracene-iminonitroxide radical 2 was synthesized, which can make the coordination to metal ions. It was confirmed by the time-resolved ESR experiments that 2 has a photo-excited quartet (S = 3/2) high-spin state. Cu(II)(hfac)2(2)2 and Mn(II)(hfac)2(2)2 were synthesized by using 2 as a ligand. Their magnetic properties on the ground states were analyzed by three-spincluster model S1  SM  S2 (S1 = S2 = SM = 1/2 for Cu(II)(hfac)2(2)2 and S1 = S2 = 1/2, SM = 5/2 for Mn(II)(hfac)2(2)2). The exchange interactions (J/kB) between 2 and the metal ions were very weak (J/kBs were ferromagnetic for Cu(II)(hfac)2(2)2 and antiferromagnetic for Mn(II)(hfac)2(2)2). The molecular orbital calculations of 2 have suggested the strong interaction between the paramagnetic center of the metal ions and the photo-excited quartet high-spin state.  相似文献   

6.
The TtZn(II)-bound perchlorate complex [TtZn–OClO3] 1 (Ttxyly = hydrotris[N-xylyl-thioimidazolyl]borate) was used for the synthesis of zinc(II)-bound ethanthiothiol complex [TtZn–SCH2CH3] 2 and its hydrogen-bond containing analog Tt–ZnSCH2CH2–NH(CO)OC(CH3)3 3. These thiolate complexes were examined as structural models for the active sites of Ada repair protein toward methylation reactions. The Zn[S3O] coordination sphere in complex 1 includes three thione donors from the ligand Ttixyl and one oxygen donor from the perchlorate coligand in ideally tetrahedral arrangement around the zinc center. The average Zn(1)–S(thione) bond length is 2.344 Å, and the Zn(1)–O(1) bond length is 1.917 Å.  相似文献   

7.
New luminescent mononuclear and dinuclear copper(II) (S = 1/2) complexes [Cu(HL)(H2O)2](ClO4)2 (1a) and [Cu2(HL)2(μ-SO4)2]·2H2O (1b) were synthesized with the acyclic tridentate pyridine-2-carboxaldehyde-2-pyridylhydrazone ligand, HL (1). Interestingly, the mononuclear complex 1a can be converted into the disulfate bridged dimeric copper(II) complex 1b by passing freshly prepared SO2 through the basic medium. On excitation at 290 nm, the ligand fluoresces at 364 nm due to an intraligand 1(π–π1) transition. Upon complexation with copper(II), the emission peak is slightly blue shifted (356 nm, F/F0 0.76 for 1a and 354 nm, F/F0 0.89 for 1b) with a little quenching in the emission intensity. The association constants (Kass (5.06 ± 0.004) × 104 for 1a and Kass (5.46 ± 0.006) × 104 for 1b at 298 K) and the thermodynamic parameters have been determined by UV–Vis spectroscopy. The molecular structure of the complex 1b (Cu?Cu 4.456 Å) has been determined by single crystal X-ray diffraction studies. The complex 1b exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 6.3 × 104 M?1 and Ksv (Stern–Volmer quenching constant) 2.93 values.  相似文献   

8.
A series of three platinum(II) halide complexes 24 [Pt(X)2{Nap(PPh2)(SPh)}] (Nap = naphthalene-1,8-diyl; X = Cl, Br, I) and a ruthenium(II) p-cymene complex 5 [Ru(η6-MeC6H4iPr)(Cl){Nap(PPh2)(SPh)}]+Cl? of the sterically crowded peri-substituted naphthalene phosphine 1 have been prepared. The compounds were fully characterised by multinuclear NMR, IR and MS and X-ray data for 15 are compared. Molecular structures are analysed by naphthalene ring torsions, peri-atom displacement, splay angle magnitude, P···S interactions, aromatic ring orientations and geometry around the metal centre. Platinum adopts a strictly square planar geometry which increases the distortion of the naphthalene skeleton in 24. Conversely, the classical-piano stool conformation of 5 results in a pseudo-octahedral conformation around the ruthenium atom which influences the naphthalene geometry to a much lesser extent with distortion of a similar magnitude to the free ligand 1.  相似文献   

9.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

10.
The synthesis and structure of Rh(I) and Pd(II) complexes of chiral P,C-chelating phosphino-(α-sulfinylalkyl)phosphonium ylide ligands with a trisubstituted asymmetric ylidic center P+–C1R(S1(O)p-Tol)–M (R = alkyl group) have been investigated, and compared to those of the analogous disubstituted ylide complexes (R = H). Reaction of the ethyl onium ylide of o-bis(diphenylphosphino)benzene with (?)-menthyl-(S)-p-tolylsulfinate afforded the corresponding racemic erythro phosphino-(α-sulfinylethyl)phosphonium in 90% de (R = Me). The racemization process is interpreted by a Berry-like pseudorotation mechanism driven by the steric repulsion between the α-methyl substituent and the bulky menthyloxy S-substituent or sulfur lone pair in the intermediate ylide-sulfinyl adduct. The ylide of phosphino-(α-sulfinylethyl)phosphonium reacts with [Rh(cod)2][PF6] and PdCl2(MeCN)2 to afford the corresponding P,C1-chelated threo-Rh(I) and erythro-Pd(II) mononuclear complexes in 70% yield and total diastereoselectivity. These respective complexes act as efficient catalytic precursors for the hydrogenation of (Z)-α-acetamidocinnamic acid and allylic substitution of 3-acetoxy-1,3-diphenyl-1-propene with sodium dimethyl malonate. The bonding features of the erythro-Pd(II) complex exhibiting a sulfinyl O?Pd interaction are studied theoretically at the DFT level using ELF and MESP analyses. The η2-P,C haptomeric form of the ylide ligand is estimated to compete at 19% with the η1-C haptomeric form dominating at 81%.  相似文献   

11.
The title complex l-[Cu4(Hvap)2(vap)2(MeOH)2](CIO42 1 has been synthesized and characterized by EA. IR,TGA,solid-state CD spectra and X-ray single-crystal analyses(l-H2vap’.a Schiff base ligand derived from the condensation of o-vanillin and l-2-amino-3-phenyl-l-propanol).Complex 1 crystallizes in monoclinic system,chiral space group P21 with a =10.4257(18).b = 21.695(4),c = 15.721(3)A,β= 94.443(3).V= 3545.1(11) 3,Z=2,Cu4C70H78N4O22Cl2.Mr= 1652.42,Dc= 1.548 g/cm3, F(000)= 1704 andμ(MoKα) = 1.338 mm-1.The final R = 0.0682 and wR = 0.1420 for 6170 observed reflections with I > 2σ(I) and R = 0.1775 and wR = 0.1830 for all data.The structure of complex 1 contains a boat-shaped(Cu4O4} motif.The solid-state CD spectra confirm the chiral nature of complex 1.  相似文献   

12.
The clinically active functionalized β-diketones 1-(2′,4′-dihydroxyphenyl)-3-(2″-substitutedphenyl)-propane-1,3-dione (L1)–(L2) have been synthesized from Baker–Venkataraman transformation of 2,4-diaroyloxyacetophenones. Their transition metal complexes (1)–(8) have been prepared and characterized by physical, spectral and analytical data. The functionalized beta-diketone potentially acts as bidentate ligand and co-ordinate with the transition metal atom through beta-diketo system. The complexes have general formula [ML2] where M = Co(II), Ni(II), Cu(II), Zinc(II) and L = ligand. The 1-(2′,4′-dihydroxyphenyl)-3-(2″-substitutedphenyl)-propane-1,3-dione and their transition metal complexes have been screened for in vitro antibacterial, antifungal and antioxidant bioassay. The biological activity data show that the transition metal complexes are more potent antibacterial, antifungal and antioxidant agents than the parent functionalized beta-diketone against different bacterial and fungal species. This constitutes a new group of compounds that can be used as potential metal derived drugs. Ultimately, here we can prompt about the use of metals for the drugs. The metal complexes were also studied for their thermogravimetric analyses.  相似文献   

13.
Two new complexes [MnIII(HL)2(acac)] and [MnII(HL)2]n have been obtained by reacting manganese(III) acetylacetonate monohydrate or manganese(II) chloride monohydrate with 2-salicylichydrazono-1,3-dithiolane ligand (H2L). Both compounds have been fully characterized by spectroscopic methods and single crystal X-ray diffraction. In the solid state, the molecular packing are described and discussed in term of weak H-bonds and short contacts. The unprecedented bridging coordination mode of this ligand lead to the first 2-salicylichydrazono-1,3-dithiolane-bridged coordination polymer [MnII(HL)2]n. The EPR spectrum of this compound was obtained with g  2.07, corresponding to a manganese ion (+II) in octahedral high-spin coordination sphere. The MnII complex exhibit paramagnetic behavior corresponding to quasi-isolated metal centers.  相似文献   

14.
The reaction of organoaluminum compounds containing O,C,O or N,C,N chelating (so called pincer) ligands [2,6-(YCH2)2C6H3]AliBu2 (Y = MeO 1, tBuO 2, Me2N 3) with R3SnOH (R = Ph or Me) gives tetraorganotin complexes [2,6-(YCH2)2C6H3]SnR3 (Y = MeO, R = Ph 4, Y = MeO, R = Me 5; Y = tBuO, R = Ph 6, Y = tBuO, R = Me 7; Y = Me2N, R = Ph 8, Y = Me2N, R = Me 9) as the result of migration of O,C,O or N,C,N pincer ligands from aluminum to tin atom. Reaction of 1 and 2 with (nBu3Sn)2O proceeded in similar fashion resulting in 10 and 11 ([2,6-(YCH2)2C6H3]SnnBu3, Y = MeO 10; Y = tBuO 11) in mixture with nBu3SniBu. The reaction 1 and 3 with 2 equiv. of Ph3SiOH followed another reaction path and ([2,6-(YCH2)2C6H3]Al(OSiPh3)2, Y = MeO 12, Me2N 13) were observed as the products of alkane elimination. The organotin derivatives 411 were characterized by the help of elemental analysis, ESI-MS technique, 1H, 13C, 119Sn NMR spectroscopy and in the case 6 and 8 by single crystal X-ray diffraction (XRD). Compounds 12 and 13 were identified using elemental analysis,1H, 13C, 29Si NMR and IR spectroscopy.  相似文献   

15.
Three novel Zn(II) complexes,[Zn4L1Cl4]-3H2O(1),[Zn4L2Cl4]-2DMF(2) and[Zn4L3Cl4]H2O(3),have been synthesized and structurally characterized.In these complexes,interesting 32-membered dodecadentate macrocyclic ligands were generated in situ by ’2 + 2’ type condensation reactions between a tetraamine and various dialdehydes.All the complexes are isostructurally tetranuclear Zn(Ⅱ) complexes,containing endogenous alkoxo and phenoxo bridges.Applications of the macrocyclic ligands as Zn2+ sensors have been investigated.Take H4L1 for example,it exhibits a 4-fold fluorescence enhancement upon the addition of 2 equiv.of Zn2+ in MeOH.  相似文献   

16.
The synthesis of two N-alkylaminopyrazole ligands, 1-[2-(diethylamino)ethyl]-3,5-diphenylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-diphenylpyrazole (L2), is reported. These ligands present, a priori, one pyrazole nitrogen and one amine nitrogen as potential donor atoms. However, in the reaction of the ligands (L1 and L2) with [PdCl2(CH3CN)2] one of the Cphenyl atoms can also behave as a donor atom. As a result, we have obtained the formation of three different compounds for each one of the ligands: chelated ([PdCl2(L)] L = L1 (1a), L2 (2a)), zwitterionic ([PdCl3(LH)] LH = LH1 (1b), LH2 (2b)), and cyclopalladated compounds ([PdCl(LC)] (LC = LC1 (1c), LC2 (2c)). The solid-state structures for 1a, 1b and 1c were determined by single crystal X-ray diffraction methods. The potentially [C,N,N′]? ligand is coordinated through the Npz and the Namino to the metal atom for 1a, through the Npz for 1b, and through the Npz, the Namino and a Cphenyl for 1c.  相似文献   

17.
Two new Ru(II) complexes, [Ru(bpy)2(1-COO-iqu)]+ (2; bpy = 2,2′-bipyridine, 1-COO-iqu? = isoquinoline-1-carboxylate) and [Ru(bpy)2(3-COO-iqu)]+ (3; 3-COO-iqu? = isoquinoline-3-carboxylate), were prepared and their crystal structures solved. The ground and excited state properties of 2 and 3 were characterized and compared to those of [Ru(bpy)3]2+ (1). The presence of the oxygen atom in the Ru(II) coordination sphere makes 2 and 3 easier to oxidize than 1. The Ru  bpy MLCT absorption and emission of 2 and 3 are red-shifted relative to that of 1 in CH2Cl2, and the E00 energies were estimated to be 1.89 eV and 1.95 eV from the low temperature emission of 2 and 3, resulting in excited state oxidation potentials of ?1.03 V and ?1.10 V vs SCE, respectively. In addition to the short-lived emissive 3MLCT state, a long-lived species is observed in the transient absorption of 3 in DMSO (τ = 49 μs) and pyridine (τ = 44 μs), assigned to a solvent-coordinated complex. This intermediate is not observed for 3 in non-polar solvents or for 2. The absence of the solvent coordinated intermediate in 2 is explained by the stronger Ru–O bond afforded by the lower conjugation in that extends onto the carboxylic acid in the 1-COO-iquo?ligand, compared to that in the 3-COO-iqu?ligand in 3. Transient absorption experiments also show that the 3MLCT excited state of 3 is able to reduce methyl viologen.  相似文献   

18.
A series of heterodinuclear acylpalladium–cobalt complexes having a bidentate nitrogen ligand, L2(RCO)Pd–Co(CO)4 (L2 = bpy, R = Me (5), Ph (6); L2 = tmeda, R = Me (7), Ph (8); L2 = phen, R = Me (9), Ph (10)) are prepared by metathetical reactions of PdRIL2 with Na+[Co(CO)4] followed by treatment with CO. These complexes are characterized by NMR and IR spectroscopies and elemental analyses, and the molecular structures of 6, 8, and 9 are determined by X-ray structure analysis. Geometry at Pd is essentially square planar and the Co atom is considered to have d10 tetrahedral structure, where cobalt(-I) anion coordinates to palladium(II) cation. Heterodinuclear organopalladium–cobalt complexes are shown to catalyze copolymerization of aziridines and CO under mild conditions. Reaction of (dppe)MePd–Co(CO)4 (1) with aziridine gives a cationic (aziridine)palladium(II) complex with [Co(CO)4] anion, [PdMe(aziridine)(dppe)]+[Co(CO)4] (13).  相似文献   

19.
The non-symmetric phosphorus ylides and their Pd(II) complexes have been synthesized as potential antioxidant and antibacterial compounds and their structures were elucidated using a variety of physicochemical techniques. The reaction of 1 equiv non-symmetric phosphorus ylides, Ph2PCH2PPh2C(H)C(O)PhX (X = Br (Y1), Cl (Y2), NO2 (Y3), OCH3 (Y4)) with [Pd(dppe)Cl2] (M1), followed by treatment with 2 equiv AgOTf led to monomeric chelate complexes, [(dppe)Pd(Ph2PCH2PPh2C(H)C(O)PhX)] (OSO2CF3)2 (X = Br (C1), Cl (C2), NO2 (C3), OCH3 (C4)), which contain a five-membered P,P chelate ring in one side and a five-membered P,C chelate ring in the other side. Palladium ion complexes were synthesized and investigated by cyclic voltammetry, FT-IR, UV–visible, multinuclear (1H, 31P and 19F) NMR, thermal analysis and ESI-mass spectroscopic studies. Some complexes and ligands have been studied by powder XRD and single crystal X-ray diffraction techniques. FT-IR and 31P NMR studies revealed that the ylides Y are coordinated to the metal ions via the terminal phosphorus (Pc) of the ylides and methene group (CH). The proposed coordination geometry around the Pd atom in these complexes is defined as slightly distorted square planar by UV-Visible and DFT studies. Thermal stability of all complexes was also shown by TG/DTG methods. Furthermore, the electrochemical behavior of the complexes was investigated by cyclic voltammetry. The results indicate that all complexes are successfully synthesized from the initial ligands. All complexes were analyzed for their antioxidant properties by DPPH free radical scavenging assay. In addition, the antibacterial effects of the hexane-solved complexes were investigated by disc diffusion method against four Gram positive and negative bacteria. All complexes represented antibacterial activity against bacteria tested especially on Gram positive ones. A theoretical study on the structure, 1H and 31P NMR chemical shifts and the interaction energy between the Pd2+ ion and ligands dppe and ylide Y is also reported.  相似文献   

20.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号