首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the emulsion polymerization of vinyl acetate (VAc) using poly(vinyl alcohol) (PVA) as stabilizer and potassium persulfate as initiator, the VAc reacts with PVA forming PVA-graft-PVAc. When the grafted polymer reaches a critical size it becomes water-insoluble and precipitates from the aqueous phase contributing to the formation of polymer particles. Since particle formation and therefore the properties of the final latex will depend on the degree of grafting, it is important to quantify and to characterize the grafted PVA. In this work, the quantitative separation and characterization of the grafted water-insoluble PVA was carried out by a two-step selective solubilization of the PVAc latex, first with acetonitrile to separate PVAc homopolymer, followed by water to separate the water-soluble PVA from the remaining acetonitrile-insoluble material. After the separation, the water-soluble and water-insoluble PVA were characterized by Fourier Transform Infrared (FTIR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) analyses, from which the details of the PVA-graft-PVAc structure were obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The most important technological procedure in the production of PVC is the suspension polymerization of vinyl chloride, as processibility of the polymer may be influenced to a considerable extent by the choice of polymerization conditions. Structure heterogeneities in PVC powders manifest themselves in plasticized PVC by the occurrence of “fish eye” particles. This review concerns the formation and properties of these particles and discusses the causes of their difficult processibility. Also, the relation between polymerization process and PVC dehydrochlorination is discussed and a new mechanism of its initiation based on the reactivity of cisoid enone structures is proposed. These structures catalyze elimination of hydrogen chloride from regular units of PVC by an interchain enzyme-like mechanism giving rise to chloroallyl structures.  相似文献   

3.
The radiation-induced graft polymerization of butadiene onto poly(vinyl chloride) powder was studied. By the kinetic treatment of elementary reactions the values of kp and kt[Z] of the graft polymerization were obtained. The activation energy of the propagation was calculated as 16.0 kcal mole?1. The value of kp was proportional of the 0.42 power of the dose rate and that of kt[Z] was proportional to the 0.84 power of the dose rate.  相似文献   

4.
Irradiated poly(vinyl chloride) has been characterized by various techniques. The very high doses (up to 20 Mgy) produce dramatic changes in the material. Chemical changes were studied by TGA analysis. Surface morphology and microstructure were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). PVC irradiated at the highest dose, 20 MGy, shows a structure consisting mainly of carbon which, in some cases, is crystalline. This carbon-rich material also shows a particular affinity for the adsorption and desorption (after electron bombardment) of ambient gases, as is clearly shown in electron stimulated desorption (EDS) experiments performed in this study.  相似文献   

5.
The radiation-induced graft polymerization of styrene to poly(vinyl chloride) (PVC) was investigated. Relations between the rate of grafting and the dose rate when the polymer is irradiated in liquid monomer or in monomer vapor, and between the rate of grafting and monomer concentration absorbed in the polymer have been investigated. The rate of grafting in monomer vapor was found to be far larger than that in liquid monomer. A high rate of grafting in monomer vapor was thought to result from a lower concentration of monomer in PVC during irradiation. An experiment carried out on PVC containing the monomer at various concentrations showed that the rate is largest at a monomer concentration of about 3.5 mole/l. and is smaller for higher and lower concentrations. On the assumption that the theory of homogeneous homopolymerization can be applied to this grafting reaction, the value of kp2/kt has been obtained, where kp and kt are propagation constant and termination constant, respectively. The value of kt greatly increases when the monomer concentration exceeds 3.5 mole/l. This increase of kt can be accounted for if it is assumed that the monomer absorbed in the polymer works as a plasticizer and increases the molecular motion of the polymer. A measurement of the elastic modulus of PVC containing the monomer at various concentrations showed that this is, in fact, the case.  相似文献   

6.
Poly(vinyl chloride) latexes have been prepared by polymerization in micron and submicron sized monomer droplets. Monomer emulsions with excellent long time stability were obtained by diffusional swelling of vinyl chloride monomer into preformed, stable polydisperse pre-emulsions of water-insoluble oils or monodisperse, oligomer styrene seed particles. It was found that the size and size distribution of the final latex particles were determined by those of the parent monomer emulsions. Except for the secondary particles formed during polymerization, the size and size distributions of the latex particles were found to be com-parable to those of the monomer emulsions employed, indicating a complete nucleation of the parent emulsion droplets. The extent of secondary particle formation was found to be very dependent upon the emulsifier concentration as well as on the type and amount of initiator used. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The polymerization of poly(vinyl chloride) (PVC), head-to-head macroradical plays an essential role in the formation of branches and the appearance of interruption processes that lead to labile unsaturated end groups. A reaction mechanism is suggested to explain these processes and the method of formation of internal double bonds as a result of transfer to polymer. The transfer to monomer can occur only by atom acceptance by the macroradical and not by the monomer giving up an atom.  相似文献   

8.
Temperature gradient interaction chromatography (TGIC) was employed to fractionate a commodity polymer, poly(vinyl chloride) (PVC) with wide molecular weight distribution (MWD). The TGIC fractionation was carried out with C18 bonded silica and dimethylformamide (DMF) as the stationary and mobile phase, respectively. TGIC exhibited a high resolution to fractionate the PVC into the fractions with a narrow MWD comparable to the anionically polymerized standards. In combination with light scattering detection, TGIC is able to characterize the polymers with wide MWD and shows a good potential to be further developed as a new preparative fractionation method of synthetic polymers.  相似文献   

9.
The effect of interfacial adhesion on the mechanical properties of an incompatible polymer blend was investigated. For this purpose, the preparation of non-cross-linked and cross-linked poly(methyl methacrylate) particles having mean sizes of about 0.8 μm was completed by seeded emulsion polymerization, and the number and the distribution of cross-linked points in the particles were varied. The emulsion particles obtained were powdered by a freeze–dry method and dispersed into a poly(vinyl chloride) matrix by melt blending. The non-cross-linked particles were completely dissolved in the matrix because poly(methyl methacrylate) has good compatibility with poly(vinyl chloride). On the other hand, in the case of the cross-linked particles, the mutual diffusion of the polymer molecules was restricted within the particle/matrix interfacial regions owing to the cross-linked points. Additionally, interfacial structures with different concentration slope dependent upon the number and the distribution of inner cross-linked points were developed with the same domain size. Mechanical and fracture properties were measured. As a result, both yield stress and fracture toughness decreased with a decrease in the interfacial adhesion, and the decrease was found to occur as a result of interfacial debonding. When the interfacial adhesion was sufficient it was never observed that the level was lower than that of the components. Received: 6 April 2000 Accepted: 29 September 2000  相似文献   

10.
Relationship between the structure and the thermal stability of poly(vinyl chloride) synthesized by various polymerization catalysts was investigated. The Cp∗Ti(OPh)/MAO catalyst, n-butyllithium (n-BuLi), the Cu(0)/TREN/CHBr3/DMSO catalyst, benzoyl peroxide/N,N-dimethylaniline (BPO/DMA), 2,2’-azobis(2.4-dimethylvaleronitrile) (V-65) was used as the polymerization catalyst. The temperature of 5% weight loss was in the following order; Cp∗Ti(OPh)3/MAO (280 °C) > n-BuLi (264 °C) > V-65 (249 °C) > Cu(0)/TREN/CHBr3/DMSO (215 °C) > BPO/DMA (209 °C), and the rate of weight loss was the reverse order of T−5% in the isothermal degradation of the polymer from 160 °C to 220 °C. The T−5% value of the polymer obtained from the polymerization with Cp∗Ti(OPh)3/MAO catalyst increased with an increase of the molecular weight of PVC, in contrast to that PVC obtained with the radical initiator did not depend on the molecular weight of the polymer. The T−5% value of PVC macromonomer was 285 °C, while the temperature of non-functionalized PVC was 262 °C, respectively. It is clear that the PVC macromonomer had a good thermal stability regardless of low-molecular weight.  相似文献   

11.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
《Polymer Photochemistry》1981,1(3):221-232
Hydrogen chloride is evolved at an increasing rate in the light-induced oxidation of poly(vinyl chloride) films. These accelerated kinetics were shown to result from an increased absorption of light by the polyenes formed, since the quantum yield of dehydrochlorination (ΦHCl = 0·015) is independent of the extent of the reaction in the dose range investigated. Determination of the quantum yields of the different processes involved indicate that, for each scission of the polymer backbone, 11 molecules of hydrogen chloride are evolved while three carbonyl groups, two hydroperoxides and 0·4 intermolecular crosslinks appear on the polymer chain. A mechanism that involves β-scissions of the tertiary alkoxy radicals, resulting from non-terminating interactions of α-chloro-peroxy radicals, is suggested to explain the observed increase of the polymer degradation in the presence of oxygen.  相似文献   

13.
Allyl free-radical intermediates are detected by ultraviolet absorption at 255 mu in poly(vinyl chloride) irradiated at ?196°C and stored at 25°C. In vacuum at 25°C, allyl radicals are converted into polyenyl free radicals and polyenes. From the nature of allyl radical decay in vacuum, radical chain transfer between polyenyl radicals and poly(vinyl chloride) is inferred. Allyl and polyenyl free radicals are scavenged by oxygen on post-irradiation storage in air.  相似文献   

14.
A pyrolysis–gas chromatography–mass spectrometric technique has been developed to study the thermal degradation of poly(vinyl chlorides) polymerized at different temperatures. Hydrogen chloride and benzene evolution during successive stages of pyrolysis have been quantitatively determined and correlated to the tacticity and molecular weight of the polymer. It was found that lowering the temperature of polymerization and molecular weight depresses benzene evolution and increases char weight but does not affect the HCl yield. It is suggested that the syndiotactic trans microstructure favored at low temperature of polymerization yields polyenes which cannot cyclize to form benzene. As the molecular weight decreases, the increase in number of vinyl chain ends facilitates pyrolytic crosslinking and char formation.  相似文献   

15.
The photo-oxidation of PVC has been studied over the temperature range 30–150°C. Initiation with ultraviolet (2537A) radiation has been correlated with the presence of minute amounts of ozone. The contribution of atomic oxygen and singlet oxygen (1Δg) molecules to the initiation mechanism is discussed. The β-chloroketones probably formed in the photo-oxidation of PVC, decomposed according to a Norrish type I reaction without loss of chlorine atoms. The gaseous products of the photo-oxidation of PVC at 30°C were carbon dioxide, carbon monoxide, hydrogen, and methane. Hydrogen chloride was obtained only when PVC was heated at high temperatures. When PVC was photo-oxidized and then heated at high temperature, benzene was obtained in addition to hydrogen chloride. The gaseous products from the photo-oxidations of model compounds, such as 4-chloro-2-butanone and 2,4-dichloropentane, were also compared with those from PVC. Hydrogen chloride was detected only after photo-oxidation at temperatures of 25°C or higher. Therefore, it was concluded that hydrogen chloride is mainly a product of thermal decomposition. Since unsaturation was not observed in photo-oxidized PVC films, the cause of discoloration is unclear. When PVC was modified by stabilizers or additives, the oxidative degradation was further complicated by side reactions with the additives.  相似文献   

16.
17.
Poly(vinyl chloride) (PVC) has been converted to an electrically conductive structure by combined electrochemical and photochemical methods. PVC was cast on a polypyrrole (PPy) film electrode which had been electrochemically prepared. The PVC layer in the laminated PVC/PPy films was first dehydrochlorinated under the illumination of UV light, and the generated polyenes were subsequently doped with I2 and FeCl3. The maximum electrical conductivity achieved for such PVC film was 2.51 X 10?2 and 8.63 10?2 S cm?1 after I2 and FeCl3 doping, respectively. The temperature dependence of the electrical conductivity showed different behavior in higher and lower temperature ranges. In the former (T > 243 K), the T?1 law held, and the activation energy and bandgap were estimated as 0.25 and 0.49 eV, respectively. In the latter (T < 243 K), the conductivity mechanism followed the variable range hopping model (T?1/4 law) in which the radius of the localized state wave function and the density of the localized states at the Fermi level were 1.25 × 103 Å and 1.03 X 1015 eV?1 cm?3, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The enthalpies of the interaction between PVC or its copolymers and different fillers introduced into the polymerization mass were estimated by the microcalorimetric techniques. For highly filled compounds, the strength of the polymer - filler interaction depends on the chemical nature of both components. The determination of the interaction enthalpy makes it possible to choose a polymeric cover providing for the best interaction and to calculate the lowest amount of the polymer covering entirely the filler surface.  相似文献   

19.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

20.
An ionomer-type of polyurethane (PU) emulsion was prepared from toluene diisocyanate (TDI), polypropylene glycol (PPG) and dimethylol propionic acid (DMPA) following a self-emulsification process. The modified poly(vinyl chloride) (PVC) emulsion resin was obtained by in situ emulsion copolymerization using the PU as seeds in an autoclave. The effects of PU molecular weight on the mechanical properties and thermal stability of the PU/PVC materials were investigated. The composite latex particles and composite materials were determined and characterized using a laser particle size analyzer, transmission electron microscopy or scanning electron microscopy. The study results showed that the PU/PVC hybrid emulsion particles possess a core/shell structure. When the general mechanical properties of the composite materials increase, the thermal stabilities decrease a little. The tough fractures on the surface of the PU/PVC composite sample following impact are quite obvious. __________ Translated from Journal of Hebei Normal University (Natural Science Edition), 2007, 31(2): 228–232 [译自: 河北师范大学学报(自然科学版)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号