首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode materials with different microstructure have been prepared by a continuous carbonate co-precipitation method using LiOH⋅H2O, Li2CO3, CH3COOLi⋅2H2O and LiNO3 as lithium source. The effects of Li source on the physical and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that the morphology, tap density and high rate cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 spherical particles are strongly affected by Li source. Among the four Li sources used in this study, LiOH⋅H2O is beneficial to enhance the tap density of Li[Ni1/3Co1/3Mn1/3]O2, and the tap density of as-prepared sample reaches 2.32 g cm−3. Meanwhile, Li2CO3 is preferable when preparing the Li[Ni1/3Co1/3Mn1/3]O2 with high rate cycling performance, upon extended cycling at 1 and 5C rates, 97.5% and 92% of the initial discharge capacity can be maintained after 100 cycles.  相似文献   

2.
To improve the electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 at high charge end voltage (4.6 V), a series of the mixed transition metal compounds, Li(Ni1/3Co1/3 − x Mn1/3M x )O2 (M = Mg, Cr, Al; x = 0.05), were synthesized via hydroxide coprecipitation method. The effects of doping Mg, Cr, and Al on the structure and the electrochemical performances of Li[Ni1/3Co1/3Mn1/3]O2 were compared by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy. The XRD results show that all the samples keep layered structures with R3m space group as the Li[Ni1/3Co1/3Mn1/3]O2. SEM images show that all the compounds have spherical shapes and the Cr-doped sample has the largest particle size. Furthermore, galvanostatic charge–discharge tests confirm that the Cr-doped electrode shows improved cycling performance than the undoped material. The capacity retention of Li(Ni1/3Co1/3 − 0.05Mn1/3Cr0.05)O2 is 97% during 50 cycles at 2.8∼4.6 V. The improved cycling performance at high voltage can be attributed to the larger particle size and the prevention of charge transfer resistance (R ct) increase during cycling.  相似文献   

3.
Layered LiNi0.4Co0.2Mn0.4O2, Li[Li0.182Ni0.182Co0.091Mn0.545]O2, Li[Li1/3Mn2/3]O2 powder materials were prepared by rheological phase method. XRD characterization shows that these samples all have analogous structure to LiCoO2. Li[Li0.182Ni0.182Co0.091Mn0.545]O2 can be considered to be the solid solution of LiNi0.4Co0.2Mn0.4O2 and Li[Li1/3Mn2/3]O2. Detailed information from XRD, ex situ XPS measurement and electrochemical analysis of these three materials reveals the origin of the irreversible plateau (4.5 V) of Li[Li0.182Ni0.182Co0.091Mn0.545]O2 electrode. The irreversible oxidation reaction occurred in the first charging above 4.5 V is ascribed to the contribution of Li[Li1/3Mn2/3]O2 component, which maybe extract Li+ from the transition layer in Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2 through oxygen release. This step also activates Mn4+ of Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2, it can be reversibly reduced/oxidized between Mn4+ and Mn3+ in the subsequent cycles.  相似文献   

4.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

5.
Special synthetic conditions at 0 °C were used to prepare nanostructured Li[Ni1/3Co1/3Mn1/3]O2 via chemical coprecipitation synthesis. The precursor preparation shows platelet shape with thickness of 10 nm and width of 100 nm. After calcination, the particles change to spherical or rectangle shape with a size of 100~200 nm. The nanostructured Li[Ni1/3Co1/3Mn1/3]O2 shows a well-ordered layered hexagonal lattice with low cation mixing. Galvanostatic testing showed good electrochemical properties and high rate capability, which may be due to its unique morphological and structural characteristics. Synthesis at 0 °C effectively prevented growth of the precursor particles and produced nanosize Li[Ni1/3Co1/3Mn1/3]O2, which gave improvement in high rate performance and favoring the future use of this cathode material for high power applications.  相似文献   

6.
Li(Mn1/3Ni1/3Co1/3)O2 cathode materials were fabricated by a hydroxide precursor method. Al2O3 was coated on the surface of the Li(Mn1/3Ni1/3Co1/3)O2 through a simple and effective one-step electrostatic self-assembly method. In the coating process, a NHCO3-H2CO3 buffer was formed spontaneously when CO2 was introduced into the NaAlO2 solution. Compared with bare Li(Mn1/3M1/3Co1/3)O2, the surface-modified samples exhibited better cycling performance, rate capability and rate capability retention. The Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 electrodes delivered a discharge capacity of about 115 mAh·g?1 at 2 A·g?1, but only 84 mAh·g?1 for the bare one. The capacity retention of the Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 was 90.7% after 50 cycles, about 30% higher than that of the pristine one.  相似文献   

7.
Layered Li[Li0.16Ni0.21Mn0.63]O2 and Li[Li0.2Ni0.2Mn0.6]O2 compounds were successfully synthesized by radiated polymer gel (RPG) method. The effect of deficient Li on the structure and electrochemical performance was investigated by means of X-ray diffraction, X-ray absorption near-edge spectroscopy and electrochemical cell cycling. The reduced Ni valence in Li[Li0.16Ni0.21Mn0.63]O2 leads to a higher capacity owing to faster Li+ chemical diffusivity relative to the baseline composition Li[Li0.2Ni0.2Mn0.6]O2. Cyclic voltammograms (CV) and a simultaneous direct current (DC) resistance measurement were also performed on Li/Li[Li0.16Ni0.21Mn0.63]O2 and Li/Li[Li0.2Ni0.2Mn0.6]O2 cells. Li[Li0.16Ni0.21Mn0.63]O2 shows better electrochemical performance with a reversible capacity of 158 mA hg−1 at 1C rate at 20 °C.  相似文献   

8.
LiNi1/3Co1/3Mn1/3O2 cathode materials for the application of lithium ion batteries were synthesized by carbonate co-precipitation routine using different ammonium salt as a complexant. The structures and morphologies of the precursor [Ni1/3Co1/3Mn1/3]CO3 and LiNi1/3Co1/3Mn1/3O2 were investigated through X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were examined using charge/discharge cycling and cyclic voltammogram tests. The results revealed that the microscopic structures, particle size distribution, and the morphology properties of the precursor and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were primarily dependent on the complexant. Among all as-prepared LiNi1/3Co1/3Mn1/3O2 cathode materials, the sample prepared from Na2CO3–NH4HCO3 routine using NH4HCO3 as the complexant showed the smallest irreversible capacity of 19.5 mAh g−1 and highest discharge capacity of 178.4 mAh g−1 at the first cycle as well as stable cycling performance (98.7% of the initial capacity was retained after 50 cycles) at 0.1 C (20 mA g−1) in the voltage range of 2.5–4.4 V vs. Li+/Li. Moreover, it delivered high discharge capacity of over 135 mAh g−1 at 5 C (1,000 mA g−1).  相似文献   

9.
采用碳酸钠和碳酸氢铵作为沉淀剂和络合剂,在水溶液中共沉淀Mn2+、Ni2+和Co2+以获得混合过渡金属元素的碳酸盐沉淀前驱体Mn0.675Ni0.1625Co0.1625CO3。并进一步合成高容量锂离子电池正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2。考察了3种不同加料方式对共沉淀前驱体的结构、形貌和元素比例的影响,以及对最终产物的结构、形貌和电化学性能的影响。  相似文献   

10.
Spherical Li[Ni0.5Mn0.3Co0.2]O2 was prepared by both the continuous hydroxide co-precipitation method and continuous carbonate co-precipitation method under different calcined temperatures. The physical properties and electrochemical behaviors of Li[Ni0.5Mn0.3Co0.2]O2 prepared by two methods were characterized by X-ray diffraction, scanning electron microscope, and electrochemical measurements. It has been found that different preparation methods will result in the differences in the morphology (shape, particle size, and tap density), structure stability, and the electrochemical characteristics (shape of initial charge/discharge curve, cycle stability, and rate capability) of the final product Li[Ni0.5Mn0.3Co0.2]O2. The physical and electrochemical properties of the spherical Li[Ni0.5Mn0.3Co0.2]O2 prepared by continuous hydroxide co-precipitation is apparently superior to the one prepared by continuous carbonate co-precipitation method. The optimal sample prepared by continuous hydroxide co-precipitation at 820 °C exhibits a hexagonally ordered layer structure, high special discharge capacity, good capacity retention, and excellent rate capability. It delivers high initial discharge capacity of 175.2 mAh g?1 at 0.2 C rate between 3.0 and 4.3 V, and the capacity retention of 98.8 % can be maintained after 50 cycles. While the voltage range is broadened up to 2.5 and 4.6 V vs. Li+/Li, the special discharge capacities at 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C rates are as high as 214.3, 205.0, 198.3, 183.3, 160.1 and 135.2 mAh g?1, respectively.  相似文献   

11.
利用二次干燥法和共沉淀法分别制备出了非球形的Ni1/3Co1/3Mn1/3OOH前驱体和球形Ni1/3Co1/3Mn1/3(OH)2前驱体, 并分别和LiNO3混合烧结合成高密度非球形和球形的锂离子正极材料Li(Ni1/3Co1/3Mn1/3)O2. XPS分析表明, 二次干燥法制备的非球形Ni1/3Co1/3Mn1/3OOH前驱体其过渡金属Ni, Co和Mn的价态分别是+2, +3和+4, 而共沉淀法制备的球形Ni1/3Co1/3Mn1/3(OH)2前驱体其各金属价态为+2; X射线衍射分析表明, 非球形的Ni1/3Co1/3Mn1/3OOH前驱体比球形的前驱体具有较高的活性, 能够在低温下合成出Li(Ni1/3Co1/3Mn1/3)O2, 而且制备的产物结晶度高, 具有规整的层状α-NaFeO2结构, 扫描电镜显示制备的非球形产物颗粒均匀, 颗粒间隙小, 振实密度高达2.95 g•cm-3, 远高于球形的振实密度2.35 g•cm-3; 充放电实验表明, 由非球形前驱体制备的Li(Ni1/3Co1/3Mn1/3)O2其充放电性能和循环性能以及体积比容量均高于球形正极材料.  相似文献   

12.
Cathode materials Li[CoxMn1−x]O2 for lithium secondary batteries have been prepared by a new route—precursor method of layered double hydroxides (LDHs). In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with mass spectrometry (TG-MS) were used to monitor the structural transformation during the reaction of CoMn LDHs and LiOH·H2O: firstly the layered structure of LDHs transformed to an intermediate phase with spinel structure; then the distortion of the structure occurred with the intercalation of Li+ into the lattice, resulting in the formation of layered Li[CoxMn1−x]O2 with α-NaFeO2 structure. Extended X-ray absorption fine structure (EXAFS) data showed that the Co-O bonding length and the coordination number of Co were close to those of Mn in Li[CoxMn1−x]O2, which indicates that the local environments of the transitional metals are rather similar. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation state of Co and Mn. The influences of Co/Mn ratio on both the structure and electrochemical property of Li[CoxMn1−x]O2 have been investigated by XRD and electrochemical tests. It has been found that the products synthesized by the precursor method demonstrated a rather stable cycling behavior, with a reversible capacity of 122.5 mAh g−1 for the layered material Li[Co0.80Mn0.20]O2.  相似文献   

13.
Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 was synthesized by a co-precipitation method. It consisted of the parent Li[Ni0.5Co0.2Mn0.3]O2 as the core and the LiFePO4 as the coating material, with an average particle diameter of 500 nm. The LiFePO4-coated Li[Ni0.5Co0.2Mn0.3]O2 showed no large initial capacity drop in the first cycle, which generally occurred with cathode materials bearing inactive coating layers such as Al2O3, ZnO, and MgO. Furthermore, it presented a remarkably improved cycle retention rate of over 89% until 400 cycles at 50 °C. We suggest that the LiFePO4 coating technique is a very effective tool to improve the cycle performance of Li[Ni0.5Co0.2Mn0.3]O2 at high temperatures.  相似文献   

14.
Using solution based processing route, we have successfully synthesized xLi(Ni0.8Co0.15Mg0.05)O2–(1?x)Li[Li1/3Mn2/3]O2 (0.0 ≤ x ≤ 1.0) cathode materials for lithium rechargeable batteries. The phase formation behavior of these cathode materials is characterized by X-ray diffraction measurements. The Galvanostatic charge–discharge characteristic of these cathodes is reported in various cut-off voltage limits. When these composite cathodes are charged to 4.8 V, electrochemical extraction of lithium takes place from active (Li[Ni0.8Co0.15Mg0.05]O2) as well as inactive (Li[Li1/3Mn2/3]O2) components. Good cycleability of these cathodes is obtained when cycled in the cut-off voltage limits of 4.6–3.0 V. The cycleability of these cathodes are deteriorated when charged above 4.8 V and deep discharged up to 1.2 V followed by repeated cycling in these voltage limits. Based on the analyses of impedance spectra at various charge and discharge states, the probable reasons for such findings are discussed.  相似文献   

15.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   

16.
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.  相似文献   

17.
Carbon surface-modified Li-excess layered oxide solid solution Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode is fabricated through a liquid phase route using polyvinylpyrrolidone as carbon source. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure and the chemical states of elements for Li[Li0.2Mn0.54Ni0.13Co0.13]O2 are kept after carbon surface treatment. The high-resolution transmission electron microscopy demonstrated the existence of very little carbon on the surface and the clear boundary after carbon treatment. The carbon surface-modified sample delivers a discharge capacity of 293.2 mAh?g?1 at C/10 rate (suppose 1 C rate?=?250 mA?g?1) and 191.6 mAh?g?1 at 1 C rate between 2.0 and 4.8 V; the capacity retention rate is ~86 % after 70 cycles at 1 C rate. Superior electrochemical properties can be contributed to the carbon surface modification in these aspects including minimizing nanoparticle aggregation and cell polarization, increasing the electronic conductivity, suppressing the elimination of oxide ion vacancies, as well as suppressing the formation of the thick solid electrolyte interfacial layer. Moreover, the annealing process of carbon surface modification might be able to consume Li2CO3 impurity partly and cause the recrystallization of the surface disordered layer.  相似文献   

18.
Layered transition metal oxide LiNi x Co y MnzO2 cathode materials with different Li amount were successfully synthesized via co-precipitation method. Monodispersed Li[Ni0.5Co0.2Mn0.3]O2 and Li-rich Li1.1[Ni0.5Co0.2Mn0.3]O2 spherical agglomeration consisted of secondary particles, which is favorable for the higher tap-density of materials, can be easily obtained. The pouch-typed cells with obtained materials were assembled to investigate electrochemical performance at level of full-cell. The results show that the assembled pouch-typed full-cells with Li-rich sample present higher capacity, better rate capability and cycle life.  相似文献   

19.
Spherical LiNi1/3Co1/3Mn1/3O2 powders have been synthesized from co-precipitated spherical metal hydroxide. The electrochemical performances of the LiNi1/3Co1/3Mn1/3O2 electrodes in 1 M LiNO3, 5 M LiNO3, and saturated LiNO3 aqueous electrolytes have been studied using cyclic voltammetry and ac impedance tests in this work. The results show that LiNi1/3Co1/3Mn1/3O2 electrode in saturated LiNO3 electrolyte exhibits the best electrochemical performance. An aqueous rechargeable lithium battery containing LiNi1/3Co1/3Mn1/3O2 cathode, LiV2.9Ni0.050Mn0.050O8 anode, and saturated LiNO3 electrolyte is fabricated. The battery delivers an initial capacity of 98.2 mAh g−1 and keeps a capacity of 63.9 mAh g−1 after 50 cycles at a rate of 0.5 C (278 mA g−1 was assumed to be 1 C rate).  相似文献   

20.
以金属硫酸盐为原料,NaOH和NH3·H2O为沉淀剂,用共沉淀法合成了Co0.9Ni0.05Mn0.05(OH)前驱体,再进行配锂并通过高温固相法合成了Ni-Mn共掺杂高电压钴酸锂锂离子电池正极材料Li(Co0.9Ni0.05Mn0.05)O2。用X射线衍射(XRD)、扫描电镜(SEM)、 循环伏安(C-V)、交流阻抗(EIS)和充放电测试研究样品的晶体结构、形貌和电化学性能。结果表明Ni-Mn共掺杂正极材料Li(Co0.9Ni0.05Mn0.05)O2有优秀的电化学性能:在3.0~4.4 V和3.0~4.5 V区间,0.5C倍率下首次放电比容量分别为162 mAh·g-1和187 mAh·g-1,循环100次后容量保持率分别为94%和94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号