首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for hydroxyapatite (HAP) synthesis in aqueous solutions by hydrolysis of α-Ca3(PO4)2 were studied. Temperature exerts a substantial effect on the rate of α-Ca3(PO4)2 hydrolysis and also changes the morphology of the reaction products. At 40 °C, the plate-like intersecting (perpendicular to the surface of the initial particles) crystals of HAP grow. Their maximum size after the 24-h hydrolysis is 1–2 µm. Needle like HAP crystals are formed upon boiling of the suspension. The morphology observed for the HAP particles agrees well with the conclusions obtained by analysis of the kinetics of tricalcium phosphate hydrolysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 78–85, January, 2005.  相似文献   

2.
The 950°C isothermal section of the InPO4-Na3PO4-Li3PO4 ternary system was studied and constructed; one-, two, and three-phase fields are outlined. Five solid-solution regions exist in the system: solid solutions based on the complex phosphate LiNa5(PO4)2 (olympite structure), the indium ion stabilized high-temperature Na3PO4 phase (Na3(1 − x)In x (PO4); space group Fm [`3]\bar 3 m), the complex phosphate Na3In2(PO4)3, and the α and β phases of the compound Li3In2(PO4)3. A narrow region of melt was found in the vicinity of eutectic equilibria. All the phases detected in the system are derivatives of phases existing in the binary subsystems. Isovalent substitution of lithium for sodium in Na3In2(PO4)3 leads to a significant increase in the region of a NASICON-like solid solution.  相似文献   

3.
Phosphates M0.5Ti2(PO4)3 (M = Ni, Zn) were synthesized by the sol-gel method and characterized by the methods of X-ray diffraction, IR spectroscopy, and electronic microprobe analysis. Structures of Ni0.5Ti2(PO4)3 and Zn0.5Ti2(PO4)3 were studied by Rietveld method using the X-ray powder diffraction data.  相似文献   

4.
Double phosphate Ba1.5Fe2(PO4)3 was synthesized and structurally studied. Single crystals were synthesized by the fusion method. Cubic crystals, Z = 4, space group P213, a = 9.866(1) Å. This structure is built of polyhedrons of four types: PO4 tetrahedrons, two virtually regular FeO6 octahedrons, BaO12 twelve-vertex polyhedrons, and BaO9 nine-vertex polyhedrons. These polyhedrons share common oxygen vertices to form three-dimensional [Fe2(PO4)3]3∞ framework containing barium atoms in cavities.  相似文献   

5.
Crystal structures of (NH4)3ZrF7 (I) and (NH4)3NbOF6 (II) are refined by X-ray diffraction at room temperature. The compounds are isostructural and belong to the structural type of elpasolite: space group F23; a(I) = 9.4185(3) Å, a(II) = 9.3371(5) Å; V(I) = 835.50(5) Å3, V(II) = 814.02(8) Å3; Z = 4; R(I) = 0.0145, and R(II) = 0.0138. The refinement of the structures in the space group Fm3m yields abnormally short X-X distances in the pentagonal bipyramid MX7 (X = F, O). The oxygen atom in II is identified by Nb-X distances and occupies one of the axial vertices of the bipyramid. The Nb atom in II is statistically distributed over the position 24f, while Zr in I resides in the symmetry center. The pentagonal bipyramid MX7 has six independent orientations in I and twelve in II. One of three crystallographically independent ammonium groups of the structures is disordered over six or twelve equivalent orientations.  相似文献   

6.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

7.
Triple phosphates A2FeTi(PO4)3 (A = Na, Rb) were synthesized by the solid-phase method and studied by electronic microscopy, electron probe X-ray microanalysis, and IR and Mössbauer spectroscopy. The crystal structure of the obtained compounds was refined by X-ray powder diffraction (the Rietveld method). The unit-cell parameters are as follows: for Na2FeTi(PO4)3 (space group R \(\overline 3 \) c, Z = 6), a = 8.6015(1) Å, c = 21.718(1) Å, V = 1391.52(1) Å3; for Rb2FeTi(PO4)3 (space group P213, Z = 4), a = 9.8892(2) Å, V = 967.12(1) Å3. The base of the crystal structures is a mixed octahedral-tetrahedral framework {[FeTi(PO4)3]2?}3∞. Na+ and Rb+ cations are arranged in cavities of the framework. The influence of cationic substitutions on the change of the structural type of the isoformular compounds A2FeTi(PO4)3 (A = Na, Rb) was considered.  相似文献   

8.
The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide (LVP/N-RGO) composite was prepared by a facile one-pot hydrothermal method and evaluated as cathode material for lithium-ion batteries. It is clearly seen that the novel porous structure of the as-prepared LVP/N-RGO significantly facilitates electron transfer and lithium-ion diffusion, as well as markedly restrains the agglomeration of Li3V2(PO4)3 (LVP) nanoparticles. The introduction of N atom also has positive influence on the conductivity of RGO, which improves the kinetics of electrochemical reaction during the charge and discharge cycles. It can be found that the resultant LVP/N-RGO composite exhibits superior rate properties (92 mA h g?1 at 30 C) and outstanding cycle performance (122 mA h g?1 after 300 cycles at 5 C), indicating that nitrogen-doped RGO could be used to improve the electrochemical properties of LVP cathodes for high-power lithium-ion battery application.
Graphical abstract The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide composite with significantly accelerating electron transfer and lithium-ion diffusion exhibits superior rate property and outstanding cycle performance.
  相似文献   

9.
Phosphate sulfates M2MgTi(SO4)(PO4)2 (M = alkali metal) prepared by the sol–gel technique with ethanol as salting-out agent were characterized by differential thermal analysis, electron probe microanalysis, and X-ray phase analysis. The crystal structure of the compounds synthesized (M = Na, K) was refined by powder X-ray diffraction. The phase stability of the phosphate sulfates under heating was examined.  相似文献   

10.
The new phosphate Cs2Mn0.5Zr1.5(PO4)3 was synthesized for the first time and characterized by X-ray diffraction. Its crystal structure was refined in space group P213, Z = 4 at 25°C (a = 10.3163(1) Å, V = 1097.93(1) Å3), by the Rietveld method using the powder X-ray diffraction data. The structure is built of an octahedral-tetrahedral framework {[Mn0.5Zr1.5(PO4)3]2?}3∞ with cesium atoms being located in large cavities. The hydrolytic stability of the powdered phosphate containing 137Cs radionuclide was studied. The minimum achieved 137Cs leaching rate was 4 × 10?8 g/cm2 day.  相似文献   

11.
A new Co-base sodium metaphosphate compound, NaCo(PO3)3, has been synthesized here by solid-state method. The crystal structure is refined by the Rietveld method, and the results reveal that NaCo(PO3)3 has an orthorhombic structure with the space group of P2 1 2 1 2 1 and lattice parameters of a = 14.2453(2) Å, b = 14.2306(1) Å, and c = 14.2603(2) Å. Its typical morphology and chemical composition are confirmed by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The valence states of all elements and the internal/external vibrational modes of NaCoP3O9 compound are measured by X-ray photoelectron and vibrational spectrum, where a typical feature of the (PO3)? polyanion group is observed. Meanwhile, the electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries are also elevated and an initial discharge capacity of 33.8 mAh/g can be obtained at 0.05 C within 1.5–4.2 V. After 20 cycles, a discharge capacity of 26.7 mAh/g can be obtained and a well-kept oxidation–reduction plateau is still observed for NaCo(PO3)3 cathode, indicating the good reversibility of this metaphosphate electrode.  相似文献   

12.
Chemical, derivatographic, IR spectral, and X-ray diffraction analyses were used to study thermal transformations in the system CO(NH2)2-H3PO4 and in the same system with addition of KNO3, CsNO3, LiNO3 · 3H2O, and NH4NO3 salts in the temperature range 20–600°C. The influence of the chosen nitrate compounds on the process of reorganization of the constituent ingredients, evolution of nitrogen into the gas phase, yield of the solid residue, and preservation of nitrogen and phosphorus was revealed.  相似文献   

13.
1H, 19F, 31P NMR, DSC, and XRD methods are used to study ionic mobility and structural transformations in the CsSbF3(H2PO4) compound (I). Radical changes in 1H, 19F, 31P NMR spectra above 390 K are associated with a crystalline disordered phase which forms in I at 400–420 K. This phase demonstrates high ionic mobility and further transforms (above 425 K) into the amorphous (glassy) phase. We have determined the types of ionic mobility in this compound and in its amorphous product. According to the NMR data, the diffusion in the proton sublattice of the disordered and amorphous phases proceeds even at room temperature.  相似文献   

14.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.  相似文献   

15.
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries.  相似文献   

16.
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.  相似文献   

17.
Glass formation boundaries in the Al2(SO4)3-Al(NO3)3-H2O system were determined. IR spectra were studied. Schemes of structural rearrangements within the boundaries of a second glass formation region in the Al(NO3)3-H2O binary subsystem are suggested. A structure is suggested for glassy Al(NO3)3H2O.  相似文献   

18.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

19.
The NaFeZr(PO4)2SO4 and Pb2/3FeZr(PO4)7/3(SO4)2/3 sulfate phosphates with the NaZr2(PO4)3 (NZP) structure were synthesized and studied using X-ray diffraction, electron microprobe analysis, IR spectroscopy, and simultaneous differential thermal and thermogravimetric analysis. The phase formation and thermal stability of the compounds were studied by powder X-ray diffraction and DTA–TG. The Pb2/3FeZr(PO4)7/3(SO4)2/3 structure was refined by full-profile analysis. The structure framework is composed of randomly occupied (Fe,Zr)O6 octahedra and (P,S)O4 tetrahedra; the Pb2+ ions occupy extra-framework sites. The thermal expansion of Pb2/3FeZr(PO4)7/3(SO4)2/3 in the temperature range from–120 to 200°C was studied by temperature X-ray diffraction. In terms of the average linear coefficient of thermal expansion (αav = 1.7 × 10–6°C–1), this compound can be classified as having low expansion. The combination of different tetrahedral anions (a phosphorus and a smaller sulfur one) in the NZP resulted in a decrease in the framework size and cavities and enabled the preparation of low-expansion sulfate phosphate with a smaller extra-framework cation (cheap Pb) instead of larger cations (Cs, Ba, Sr) used most often in the monoanionic phosphates.  相似文献   

20.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号