首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method has been developed at the Savannah River National Laboratory (SRNL) that can be used for the rapid determination of 226Ra in emergency urine samples following a radiological incident. If a radiological dispersive device event or a nuclear accident occurs, there will be an urgent need for rapid analyses of radionuclides in urine samples to ensure the safety of the public. Large numbers of urine samples will have to be analyzed very quickly. This new SRNL method was applied to 100 mL urine aliquots, however this method can be applied to smaller or larger sample aliquots as needed. The method was optimized for rapid turnaround times; urine samples may be prepared for counting in <3 h. A rapid calcium phosphate precipitation method was used to pre-concentrate 226Ra from the urine sample matrix, followed by removal of calcium by cation exchange separation. A stacked elution method using DGA Resin was used to purify the 226Ra during the cation exchange elution step. This approach combines the cation resin elution step with the simultaneous purification of 226Ra with DGA Resin, saving time. 133Ba was used instead of 225Ra as tracer to allow immediate counting; however, 225Ra can still be used as an option. The rapid purification of 226Ra to remove interferences using DGA Resin was compared with a slightly longer Ln Resin approach. A final barium sulfate micro-precipitation step was used with isopropanol present to reduce solubility; producing alpha spectrometry sources with peaks typically <40 keV FWHM (full width half max). This new rapid method is fast, has very high tracer yield (>90 %), and removes interferences effectively. The sample preparation method can also be adapted to ICP-MS measurement of 226Ra, with rapid removal of isobaric interferences.  相似文献   

2.
A new rapid method for the determination of 226Ra in environmental samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for emergency response or routine sample analyses. The need for rapid analyses in the event of a Radiological Dispersive Device or Improvised Nuclear Device event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. 226Ra (T1/2?=?1,620?years) is one of the most toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The new method to determine 226Ra in environmental samples utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate precipitation to preconcentrate Ra, and rapid column separation steps to remove interferences. The column separation process uses cation exchange resin to remove large amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step to remove 225Ac and potential interferences. The purified 226Ra sample test sources are prepared using barium sulfate microprecipitation in the presence of isopropanol for counting by alpha spectrometry. The method showed good chemical recoveries and effective removal of interferences. The determination of 226Ra in environmental samples can be performed in less than 16?h for vegetation, concrete, brick, soil, and air filter samples with excellent quality for emergency or routine analyses. The sample preparation work takes less than 6?h. 225Ra (T1/2?=?14.9?day) tracer is used and the 225Ra progeny 217At is used to determine chemical yield via alpha spectrometry. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory radium particles are effectively digested. The preconcentration and column separation steps can also be applied to aqueous samples with good results.  相似文献   

3.
A new rapid method for the determination of 228Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine 228Ra in solid samples (via 228Ac), radiochemical methods that employ gas flow proportional counting techniques typically provide lower minimal detectable activity levels for the determination of 228Ra in water samples. Most radiochemical methods for 228Ra collect and purify 228Ra and allow for 228Ac daughter ingrowth for ~36 h. In this new SRNL/EBL approach, 228Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 h so that 228Ra assay results on water samples can be achieved in <6 h. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90 %), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. 228Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify 228Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and 90Y. La is used to determine 228Ac chemical yield via ICP-MS, but 133Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.  相似文献   

4.
A procedure for the analysis of228Ra in drinking water has been developed. The procedure involves separation of radium by an initial coprecipitation with lead sulfate. The isolated Pb(Ra)SO4 is then dissolved in sodium diethylenetriamine pentaacetate (DTPA). Radium-228 is co-precipitated from this solution with barium sulfate while the DTPA supernate which contains pre-existing228Ac is discarded. The purified Ba(Ra)SO4 precipitate is then allowed to ingrow, generating228Ac, which is then dissolved in DTPA, isolating both226Ra and228Ra in the precipitate while228 Ac remains in the aqueous supernate. The supernate is partitioned against di-(2-ethylhexyl phosphoric acid), HDEHP, dissolved in n-heptane, which retains the228Ac. Actinium-228 is then stripped from the organic phase by partitioning against 1M HNO3. Finally, the228Ac is coprecipitated onto cerium oxalate. The precipitate is collected on a filter and counted in a low-background beta counter. Radium-228 standards with concentrations ranging from 0.044 to 1.6 Bq were used to establish the detector counting efficiency for228Ac in cerium oxalate samples, as well as monitoring the chemical yield and absorption factors. The resultant average value of 30.3±2.1 cpm/Bq (uncertainty given at 95% level of confidence) was obtained. Various228Ra cross checks from U. S. Environmental Protection Agency (EPA) with concentrations of 0.063–0.52 Bq/l were analyzed in order to assess the performance of the procedure. The minimum detectable concentration (MDC) of228Ra in water with this procedure is 0.015 Bq/l. This is based on a one liter aliquot of sample, a 100 min couting period, and a 3 hour decay interval between the end of228Ac ingrowth and midpoint of counting. Decontamination factor studies were performed to determine the extent of the carry-over of238U,226Ra,210Po, and90Sr into the final fraction.  相似文献   

5.
An investigation on the distribution of 226Ra and 228Ra activity concentration in coastal surface sea water from Okha in Gujarat to Ratnagiri in Maharashtra state along the west coast of India was carried out. In-situ pre-concentration technique was used to measure radium isotopes by passing 1,000 L of seawater through MnO2 impregnated polypropylene filter cartridges at all the locations. 226Ra was estimated using gamma ray peak of its daughter radionuclides 214Bi and 214Pb. 228Ra was estimated from its daughter 228Ac. In the coastal waters, 226Ra and 228Ra activity concentration were observed to be in the range of 1.5–2.9 and 2.5–8.6 Bq m?3 with a mean of 2.2 and 4.9 Bq m?3 respectively. The activity of 228Ra was observed to be more than 226Ra in all the locations. The variation in spatial distribution of the radium isotopes activity concentration and its ratio with respect to location is discussed in the paper. The radioactive database obtained represents reference values for coastal environment of India.  相似文献   

6.
New method for simultaneous determination of228Ra and226Ra by using 3M's EMPORETM Radium Rad Disks in water has been developed. Both radionuclides226Ra and228Ra were counted through their daughter products,226Ra by conventional radon emanation techniques and228Ra through its daughter228Ac by using a proportional counter. Different molarity of diammonium hydrogen citrate were used for elution of228Ac and226Ra from EMPORETM Radium Rad Disks. 79% of228Ac was eluted in 10 ml of 0.0003M diammonium hydrogen citrate. The recovery of226Ra was 99% by using 40 ml of 0.2M diammonium hydrogen citrate adjusted by ammonium to pH 7.8.  相似文献   

7.
All commercially available mineral waters of Austrian origin were investigated with regard to the natural radionuclides 228Ra, 226Ra, 210Pb, 210Po, 238U and 234U. From 1 to 1.5 L of sample the nuclides were extracted and measured sequentially: the radium isotopes as well as 210Pb were measured by liquid scintillation counting after separation on a membrane loaded with element-selective particles (Empore Radium Disks), 210Po was determined by α-particle spectroscopy after spontaneous deposition onto a copper planchette and uranium was determined also by α-particle spectroscopy after anion separation and microprecipitation with NdF3. The calculated committed effective doses for adults, teens and babies were compared to the total indicative dose of 0.1 mSv/year given in the EC Drinking Water Directive. The dominant portion of the committed effective dose was due to 228Ra. Highly mineralised waters showed also higher 226Ra and 228Ra levels.  相似文献   

8.
A sequential analytical method for the determination of238U,234U,232Th,230Th,228Th,228Ra,226Ra and210Pb in environmental samples was developed. Uranium and thorium isotopes are first chromatographically sepaaated using tri-n-octyl phosphine oxide (TOPO) supported on silica gel. The uranium isotopes are determined by alpha-spectrometry following extraction with TOPO onto a polymeric membrane. Thorium isotopes are co-precipitated with lanthanum fluoride before counting in an alpha spectrometer. Radium isotopes and210Pb are separated by co-precipitation/precipitation with mixed barium/lead sulphate. Radium-226 is determined by gross alpha counting of the final BaSO4 precipitate and228Ra by gross beta counting of the same source. Lead-210 is determined through beta counting of its daughter product210Bi.  相似文献   

9.
A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 min to 24 h or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the SRNL that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin® (N,N,N′,N′ tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.  相似文献   

10.
Three protocols (Method I: ion chromatography (IC) and extraction chromatography (EC), Method II: precipitation followed by IC, and Method III: adsorption onto MnO2 followed by IC-EC) were investigated to determine their applicability for the separation and pre-concentration of 226Ra in sediments. 226Ra recoveries, measured using the isotope dilution method with 228Ra as yield tracer, and the removal of spectral and non-spectral interferences were evaluated. The formation of polyatomic interferences at m/z = 226 from elements found in the matrix of sediments was also investigated to assess the level of separation required. Methods I and III were found to be the most effective with respect to recoveries and interference removal. The efficiency of a rapid microwave based protocol for the complete digestion of 1 g of sediment is also described. The method was tested and 226Ra concentrations in the millibecquerel range (fg) were determined in a standard reference material and sediment cores collected from Lake Baikal.  相似文献   

11.
A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified 90Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and 90Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.  相似文献   

12.
Experiment procedures have been developed for the determination of 226Ra and 224Ra activity concentration in solid and liquid samples collected around a non-nuclear industrial area, by liquid scintillation counting. The different radiochemical procedures developed in this work, have been adaptations of a radiochemical procedure previously used, for 226Ra and 224Ra determinations by LSC in drinking water, which was improved, refined up and adapted to the type of sample to be applied. These improved radiochemical methods have been applied to waste samples (phosphogypsum) produced by two factories which are engaged in phosphoric acid production, and to waters collected from the Odiel river, where during the sampling period a fraction of these wastes were released. 226Ra activity concentrations in the phosphogypsum ranged from 673 to 1178 Bq/kg dry weight, indicating that the wastes are particularly enriched in this radionuclide. Consequently, high 226Ra levels were easily found in the river waters analysed, especially in the neighbouring zones of the waste discharges.  相似文献   

13.
A procedure for the determination of natural uranium and226Ra in waters and soils has been carried out and applied to the analysis of samples for environmental radiological monitoring.226Ra determination consists of co-precipitation with BaSO4,222Rn emanation in toluene and finally liquid scintillation counting. Natural uranium is then determined by a fluorometric technique. This paper describes the method and the conditions that were tested to optimize it. The technique was found to be suitable for the analysis of surface and ground waters, samples from rivers, streams and lakes and soil samples, because of its few steps, short processing time, high recovery percentages and suitable detection limits.  相似文献   

14.
The subject of this paper was to determine some radionuclides (226Ra,228Ac and40K) in construction materials of Slovak origin and to evaluate the risk of their practical use.  相似文献   

15.
Alpha spectrometry is proposed for the quantitative analysis of227Ac and228Th in irradiated226Ra targets. The chemical separation and the radiochemical determination is described.  相似文献   

16.
Summary The SRS Environmental Laboratory analyzes water samples for environmental monitoring, including river water and ground water samples. A new, faster actinide and 89/90Sr separation method has been developed and implemented to improve productivity, reduce labor costs and add capacity to this laboratory.This method uses stacked TEVA Resinò, TRU Resinòand Sr-Resinòcartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium, neptunium, uranium, americium, curium and thorium using a single multi-stage column combined with alpha-spectrometry. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized. The method can be used for routine analysis or as a rapid method for emergency preparedness. Thorium and curium are often analyzed separately due to the interference of the daughter of 229Th tracer, actinium (225Ac) on curium isotopes when measured by alpha-spectrometry. This new method also adds a separation step using DGA Resinò, (diglycolamide resin, Eichrom Technologies) to remove 225Ac and allow the separation and analysis of thorium isotopes and curium isotopes at the same time.  相似文献   

17.
The present occurrence of 226Ra and 228Ra in marine sediment core and fish from the Exclusive Economic Zone in the east coast of Peninsular Malaysia were studied. Sediment core and biota in respectively was collected using multicorer device and purchased from local fishermen at identified stations during the cruise expedition conducted in 2008. The purpose of this study was to determine and to make available an inventory of activity concentration levels and activity ratio for these radionuclides in this region. The activity concentrations of 226Ra and 228Ra in sediment core and edible part of fish were ranged between 15.9–46.5 and 27.7–87.1 Bq/kg dry wt and; 0.80–2.13 and <0.95–3.57 Bq/kg fresh wt, respectively. Meanwhile, the activity ratios of 228Ra/226Ra in sediment core and fish were varied with the range between 1.63–2.09 and 0.45–2.38, respectively. Refer to those ranges the activity concentrations of radium isotopes were comparable with other region. Thus, it can be concluded that the occurrence of radium isotopes mainly supplied from terrestrial sources and the factors of assimilation efficiency and transfer coefficient of radium may probably effect to the variation activity concentration of 226Ra and 228Ra and its activity ratio in edible part of pelagic and demersal fish obtained in this study.  相似文献   

18.
The activity concentrations of the Ra isotopes, 226Ra and 228Ra, as well as of 222Rn were measured in Austrian tap waters. Rn was extracted into a mineral oil cocktail not miscible with water and measured by liquid scintillation counting using pulse-shape analysis for α/β-separation. Ra isotopes were co-precipitated with BaSO4 or concentrated by filtration through an element specific filter. EDTA solution was used to redissolve the precipitate as well as to release the Ra from the filter. After mixing with a cocktail, the EDTA solution was measured by liquid scintillation counting, too. From our results the effective ingestion doses for adults and 3 months old babies were calculated.  相似文献   

19.
Surface sediment samples were collected at the West (east coast and west coast of Peninsular Malaysia) and East (Sabah and Sarawak) Malaysia in several expeditions within August 2003 until June 2008 for determining the level of natural radium isotopes. Activity concentrations of 226Ra and 228Ra in surface marine sediment at 176 sampling stations were measured. The activity concentrations of both radionuclides in Malaysia (East and West Malaysia) display varied with the range from 9 to 158 Bq/kg dry wt. and 13 to 104 Bq/kg dry wt., respectively. Meanwhile, the ratio distributions of 228Ra/226Ra were ranged from 0.62 to 3.75. This indicated that the ratios were slightly high at west coast of Peninsular Malaysia compared to other regions (east coast of Peninsular Malaysia, Sabah and Sarawak). The variation of activity concentrations of 226Ra and 228Ra and its ratios were also supported by the statistical analyses of one-way ANOVA and t test at 95 % confidence level, whereby there were proved that the measured values were different between the regions. These different were strictly related to their half-life, potential input sources (included their parents, 238U and 232Th), parent’s characteristic, the geological setting/formation of the study area, environment origin and behavior.  相似文献   

20.

Elevated concentrations of the radium isotopes 224,226,228Ra exist in the scale and produced water in oil exploration. The activity concentration of 226Ra was calculated from 186.2 keV peak with no usual spectral interference of 185.7 from 235U. The activity concentration of 228Ra was calculated from its first daughter product 228Ac using the 911.2 keV gamma rays since it is a pure beta emitter. The activity concentration of 224Ra was calculated from 212Pb using the 238.6 keV gamma-ray and the secular equilibrium equation with 228Ra. The IAEA 448 (oil contaminated field soil) reference material was used as a quality control for 226,228Ra and but was unreliable for 224Ra using 212Pb.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号