共查询到18条相似文献,搜索用时 78 毫秒
1.
分别对单质硫和PABTH (polyanthra [1 ,9 ,8 -b,c,d,e][4 ,10 ,5 -b ,c ,d ,e ]bis-[1,6,6a(6a-SⅣ)trithia]pentalene)在PEO (polyethylene oxide)基聚合物电解质中的电化学性能进行了研究. 研究发现单质硫和PABTH在PEO基聚合物电解质中都存在放电产物溶解现象, 说明醚基电解液即使以聚合物形式存在(如PEO基聚合物电解质)也不能有效抑制硫电极放电产物的溶解损失. 因此, 必须设计合成具有特定结构的电解质溶剂, 以抑制硫电极放电产物的溶解. 另外, 硫及有机硫化物在PEO基聚合物电解质中的利用率较低, 这主要是由于硫及有机硫化物不是离子导体, Li+在硫及有机硫化物中的扩散系数较低, 同时, 传输Li+的PEO分子量较大, Li+不能被有效传输至材料颗粒的内部. 因此, 全固态聚合物电解质不适合锂硫二次电池, 液态小分子电解质溶剂更有利于锂硫二次电池发挥其高比容量. 相似文献
2.
采用液态碳酸酯电解质的锂离子电池在遭遇极端工况时, 极易发生泄露、燃烧、甚至爆炸等重大安全事故. 相对比, 聚环氧乙烷(PEO)固态聚合物电解质可以显著提升锂电池的安全性, 并且其优异的可塑性使其可以被制成特定形状进而满足特殊领域的差异化需求; 更为重要的是: PEO固态聚合物电解质与锂金属负极兼容性好. 然而, PEO固态聚合物电解质电化学氧化窗口低, 难以匹配高电压正极材料(≥4 V), 极大限制了其在高电压、高能量密度固态聚合物锂金属电池中的进一步应用. 近期经过国内外科研工作者在PEO固态聚合物电解质结构设计、PEO端羟基改性、含硼锂盐引入、功能型粘结剂设计开发以及正极界面层构筑等方面所做出的不懈努力, PEO固态聚合物电解质基高电压固态锂金属电池取得了系列化重大科研进展. 基于此, 本综述主要从以下八个方面: (1)高电压正极片表面修饰超薄聚合物层、(2)高电压正极颗粒包覆、(3)对碳黑颗粒进行包覆、(4)使用富含羧基的粘结剂、(5)不对称固态聚合物电解质结构设计、(6)正极界面原位形成耐高电压界面层、(7)醚氧官能团(-OCH3)封端PEO, 提升其本征耐高电压性能、(8)含硼锂盐做添加剂, 详细综述了采用PEO固态聚合物电解质构建的高电压固态锂金属电池所取得的最新研究进展以及相应的高电压固态锂金属电池界面稳定作用机制. 最后还对未来PEO固态聚合物电解质在高电压固态锂金属电池方面所存在的巨大挑战和发展趋势进行了详细展望和总结阐述. 相似文献
3.
4.
红外光谱研究PEO基离子液体聚合物电解质 总被引:1,自引:0,他引:1
以聚氧化乙烯(PEO)为聚合物基体, 双三氟甲基磺酸亚酰胺锂(LiTFSI)为锂盐, 加入不同量的离子液体(BMIMPF6)为增塑剂, 制备离子液体聚合物电解质. 运用发射FTIR光谱技术实时监测所制备聚合物电解质的结构随温度的变化. 结合FTIR透射光谱\, SEM和XRD的研究结果分析了离子液体对离子电导率的影响, 并初步提出离子导电增强机制. 相似文献
5.
锂硫电池具有理论能量密度高、成本低廉和环境友好等优点,是最有前途的下一代高比能二次电池系统之一。当前,基于有机电解液的液态锂硫电池存在多硫化锂穿梭效应、电解液易燃以及锂枝晶等问题,致使电池的库仑效率低、循环性能差,且存在严重的安全隐患。采用固态电解质(如凝胶聚合物、固态聚合物、陶瓷、复合电解质等)替代有机电解液是解决上述问题的有效途径。本文总结了近年来固态锂硫电池电解质的研究现状,评述了各类固态电解质的优缺点及改性策略,重点介绍了陶瓷固态电解质的研究进展。最后,对固态锂硫电池的未来发展趋势进行预测与展望。 相似文献
6.
7.
8.
9.
锂-硫电池具有高的理论电芯比能量和低成本,是极具应用前景的下一代电化学储能技术,已被广泛研究。实用化锂-硫电池技术目前面临的挑战主要包括正极侧电活性硫物种在充放电过程中的不可逆损失,负极侧枝晶形核生长,以及因活性硫迁移至负极而导致的界面副反应,上述问题会导致电池工况条件下性能迅速衰退,引发电池失效和安全问题。本工作中,我们提出通过设计非对称的电极-电解质界面稳定锂-硫电池正负极电化学,协同促进电极/电解质体相和界面电荷输运,从而延长电池循环寿命,显著提升电化学性能。本文所讨论的策略有望指导电池界面理性设计,助力实现高性能的锂-硫电池。 相似文献
10.
11.
将实验室经固相反应的精细Li1.3Al0.3Ti1.7(PO4)3盐与聚氧化乙烯(PEO)按照不同,nEO/nLi摩尔比,通过溶液浇铸法制备了固态聚合物电解质。红外光谱分析表明Li1.3Al0.3Ti1.7(PO4)3盐与PEO之间有络合产生。SEM照片显示PEO晶体外层为无定形相所包覆形成的胞状结构。经电化学阻抗(简称EIS)法测试发现聚合物电解质膜的室温阻抗谱图是由高频处一压缩的半圆和低频下一条直线组成,而高温时的阻抗谱主要为一条直线。离子电导率的测试结果得到:当nEO/nLi=16时,聚合物电解质室温下电导率约为10^-6/cm,343K时达到10^-4s/cm。离子迁移率的数据表明聚合物电解质为离子和电子共混的导体,但在聚合物电解质体系中电荷的迁移主要是由离子作为载流子导电造成的,由测试结果可得此电解质为离子导体。 相似文献
12.
锂电池目前在人们生活中已经得到广泛应用,但是传统的液体电解质沸点低且易泄漏,容易引起锂枝晶生长和安全问题。凝胶聚合物电解质(GPEs)的状态介于液态电解质和固态电解质之间,不仅可以作为电解质,还可以作为隔膜,这样可以减少液体电解质的泄漏以及改善固体电解质的界面电阻。本文综述了锂电池中制备不同类型的GPEs的方法,如溶液浇铸法、相转化法、原位聚合法、UV(紫外)固化法和静电纺丝法等,重点总结了不同纤维基的GPEs(聚(偏二氟乙烯)(PVDF)、聚(偏二氟乙烯-共六氟丙烯)(PVDF- HFP)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)和聚间亚苯基间苯二甲酰胺(PMIA))在锂电池中的运用,并通过对不同基质的改性来改善电解质的离子电导率,阻碍锂枝晶的生长。最后,本文对锂电池中GPEs的未来发展前景进行了展望,讨论和提出的策略将为今后高性能锂电池的实际应用提供更多的途径。 相似文献
13.
Introduction Recently, polymer electrolytes have attracted much attention for their potential use in replacing flammable organic solvent electrolytes currently used in lith-ium-ion batteries, thus improving the safety of re-chargeable lithium batteries. Moreover, the batteries with PE can be made in any shape, which make fully use of the space of electronic devices. PEO is a linear polymer with helix structure, and its structure makes it have much higher dissolution ability for salt even tho… 相似文献
14.
15.
锂-硫电池是在现有锂离子电池基础上最可能实现储能密度大幅提升的实用二次电池体系. 然而,这一电池体系的电化学利用率与循环稳定性仍然难以满足应用要求. 造成锂-硫电池性能不稳定的原因在于硫正极和锂负极的材料结构和反应环境始终处于变化之中,如在充放电过程中,硫-碳反应界面的电化学阻塞、中间产物的溶解流失、正负极之间的穿梭效应等副反应导致正极与负极均难形成稳定的电化学反应界面。针对这些特殊问题,本文简要分析了影响能量利用率和循环稳定性的化学与电化学机制,并提出了构建稳定锂负极与高效硫正极的若干可行性技术. 相似文献
16.
全固态钠离子电池具有资源丰富、安全性高等优势,作为未来大规模储能的重要选择而成为近年来先进二次电池前沿研究热点。钠离子硫系化合物电解质室温离子电导率高、弹性模量高、容易冷压成型,能增强电极/电解质界面接触、减小界面阻抗、缓冲电极材料在充放电过程中的应力/应变,是全固态钠离子电池的研究重点。本文对钠离子硫系化合物固态电解质的结构及性质进行了总结,讨论了硫系化合物电解质的本征特性、与电极的界面稳定性,并介绍了硫系化合物全固态钠离子电池的研究现状,最后分析了硫系化合物电解质面临的挑战及今后的发展方向。 相似文献
17.
18.
锂硫电池具有较高的理论比容量(以硫计1675 mAh·g-1和2600 Wh·kg-1),以及低成本和绿色环保等优势,成为最有前景的下一代可充电储能器件之一。然而,锂硫电池内部严重的多硫化锂穿梭现象导致了电池容量的下降和使用寿命的快速降低。为实现锂硫电池的商业化,其严重的“穿梭效应”亟需改善。普通的商业隔膜有很大的孔径(500 nm),且不具有阻碍多硫化锂迁移的功能。因此,对隔膜进行表面修饰,引入功能化修饰层就成为了一种很有效的策略。本文综述了近年来隔膜表面修饰所遵循的方法以及在此基础上开发的新型隔膜,并对功能化的隔膜在提升锂硫电池性能上的前景进行了展望。 相似文献