首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

2.
The paper deals with asymptotic behavior of viscoplastic solutions in the vicinity of maximum friction surfaces under plane strain conditions. The definition of maximum friction surfaces is that the friction stress is equal to the shear yield stress at sliding. The constitutive equations of the viscoplastic model adopted include a saturation stress. It is shown that it is possible to choose parameters of the viscoplastic model such that the regime of sliding is possible at maximum friction surfaces. In this case solutions are singular in the vicinity of such surfaces. Because of this feature of solutions, the viscoplastic model chosen possesses a smooth transition of qualitative behavior between rigid perfectly plastic and viscoplastic solutions, and this may prove to be advantageous for some applications.  相似文献   

3.
Constitutive modeling is studied for the homogenized elastic–viscoplastic behavior of pore-pressurized anisotropic open-porous bodies made of metallic base solids at small strains and rotations. For this purpose, by describing micro–macro relations relevant to periodic unit cells of anisotropic open-porous bodies subjected to pore pressure, constitutive features are discussed for the viscoplastic macrostrain rate in steady states. On the basis of the constitutive features found, the viscoplastic macrostrain rate is represented as an anisotropic function of Terzaghi’s effective stress, which is shown using Hill’s macrohomogeneity condition. The resulting viscoplastic equation is used to simulate the homogenized elastic–viscoplastic behavior of an ultrafine plate-fin structure subjected to uniaxial/biaxial loading in addition to pore pressure. The corresponding finite element homogenization analysis is also performed for comparison. It is demonstrated that the developed viscoplastic equation simulates well the anisotropic effect of pore pressure in the viscoplastic range in spite of there being no anisotropic factor and no fitting parameter in Terzaghi’s effective stress itself.  相似文献   

4.
This paper presents a design sensitivity analysis method by the consistent tangent operator concept-based boundary element implicit algorithm. The design variables for sensitivity analysis include geometry parameters, elastic–viscoplastic material parameters and boundary condition parameters. Based on small strain theory, Perzyna’s elastic–viscoplastic material constitutive relation with a mixed hardening model and two flow functions is considered in the sensitivity analysis. The related elastic–viscoplastic radial return algorithm and the formula of elastic–viscoplastic consistent tangent operator are derived and discussed. Based on the direct differentiation approach, the incremental boundary integral equations and related algorithms for both geometric and elastic–viscoplastic sensitivity analysis are developed. A 2D boundary element program for geometry sensitivity, elastic–viscoplastic material constant sensitivity and boundary condition sensitivity has been developed. Comparison and discussion with the results of this paper, analytical solution and finite element code ANSYS for four plane strain numerical examples are presented finally.  相似文献   

5.
金属刚粘塑性变形的能量泛函与动力显式算法有限元分析   总被引:7,自引:0,他引:7  
设计出刚粘塑性动态变形场的能量泛函,采用罚函数法和Lagrangian乘子法取消对运动容许速度场满足体积不可压缩的约束条件,运用虚功原理和广义变分原理,推导出刚粘塑性变形的动力分析显式算法有限元方程,以及速率形式的中心差分求解的时间积分显式,给出了两个金属变形的算例。  相似文献   

6.
Predicting the overall behavior of heterogeneous materials, from their local properties at the scale of heterogeneities, represents a critical step in the design and modeling of new materials. Within this framework, an internal variables approach for scale transition problem in elastic–viscoplastic case is introduced. The proposed micromechanical model is based on establishing a new system of field equations from which two Navier’s equations are obtained. Combining these equations leads to a single integral equation which contains, on the one hand, modified Green operators associated with elastic and viscoplastic reference homogeneous media, and secondly, elastic and viscoplastic fluctuations. This new integral equation is thus adapted to self-consistent scale transition methods. By using the self-consistent approximation we obtain the concentration law and the overall elastic–viscoplastic behavior of the material. The model is first applied to the case of two-phase materials with isotropic, linear and compressible viscoelastic properties. Results for elastic–viscoplastic two-phase materials are also presented and compared with exact results and variational methods.  相似文献   

7.
This work is focused on the theoretical development and numerical implementation of a viscoplastic law. According to the second law of thermodynamics a dissipation inequality described in the rotated material coordinate system is developed. Based on this dissipation inequality and the principle of maximum dissipation a finite strain viscoplastic model described also in the rotated material coordinate system is formulated. The evolution equations are expressed in terms of the material time derivatives of the rotated elastic logarithmic strain, the accumulated plastic strain and the strain-like tensor conjugate to the rotated back stress. The mathematical structure of this theory is concise and similar to that of the infinitesimal viscoplastic theory. These characteristics make the numerical implementation of this theory easy. The stress integration algorithm and the algorithmic tangent moduli for the infinitesimal theory can be applied to the numerical implementation of the present finite strain theory with a little reformulation. The complicated algorithmic formulations for most of other finite plastic laws can be therefore circumvented. In order to check the effectivity of the present finite strain theory a set of numerical examples under strict deformation conditions are presented. These numerical examples prove the excellent performance of the present viscoplastic material law at describing the finite strain elastoplastic and viscoplastic problems.  相似文献   

8.
This study formulates a micromechanical model for predicting effective viscoelastic–viscoplastic responses of composites. The studied composites consist of solid spherical particle reinforcements dispersed in a homogeneous matrix. The particle constituent is assumed linear elastic, while the matrix exhibits combined viscoelastic–viscoplastic responses. The Schapery integral model is used for the 3D isotropic non-linear viscoelastic responses. Two viscoplastic models are considered: the Perzyna model, having a rate-independent yield surface and an overstress function, and the Valanis endochronic model based on an irreversible thermodynamics without a yield surface. The Valanis model is suitable for materials when viscoplastic responses occur at early loadings (small stress levels). A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective time-dependent and inelastic responses of composites. Field variables in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having detailed particle geometries, are modeled using finite element (FE) method.  相似文献   

9.
10.
Exact solutions for the time-dependent creep behavior of a two-phase material with a lamellar microstructure are derived as a function of volume concentration and the properties of its constituents. Each phase is taken to be elastic–viscoplastic, exhibiting work-hardening characteristics. The derivation takes advantage of the condition of interfacial discontinuities over the interfaces, with a result given in a rate form for the general combined loading. Specific overall creep strains are presented along five distinctive loading directions for two kinds of viscoplastic composites: one involving an elastic and a viscoplastic phases and the other with dual viscoplastic phases. In addition to providing insightful information for the overall time-dependent creep, the exact nature of the results can also serve as a bench mark to test the accuracy of the approximate theories. In this light a secant-viscosity approach recently developed for a particle-reinforced solid (Li and Weng (1997). A secant-viscosity approach to the time-dependent creep of an elastic–viscoplastic composite. J. Mech. Phys. Solids, 45, 1069) is extended to a lamellar structure and the results are tested against these exact solutions. Comparison between the two indicates that the secant-viscosity concept is a sufficiently accurate one and it can be applied to composites with other types of microgeometries.  相似文献   

11.
黏弹-黏塑性耦合模型的黏弹性部分由弹簧、黏壶和Kelvin链串联而成,黏塑性部分为双曲线型DruckerPrager屈服函数、各向同性硬化和Perzyna黏塑性流动模型。基于黏弹性蠕变柔度,通过定义与弹性问题相对应的与时间增量相关的黏弹性剪切模量和体积模量,导出增量递推形式的本构方程。为保证算法的收敛和稳定性,把Perzyna黏塑性流动方程转化为与弹塑性相似的一致性条件,建立黏塑性增量因子单侧逼近其收敛值的N-R迭代算法。最后,给出应力更新完全隐式算法和最终计算公式。分别采用黏弹性、黏弹-塑性和黏弹-黏塑性本构关系对一地基蠕变模型进行三维有限元分析和比较,结果表明,本文算法具有较高的计算效率和稳定性。  相似文献   

12.
In this article, a constitutive theory in the framework of continuum thermomechanics is introduced to represent the viscoplastic behavior of metals at finite deformations. In particular, the experimentally observed thermomechanical coupling phenomena are described by the theory. The model is based on the assumption that the occurring viscoplastic deformations are isochoric.For the numerical integration of the constitutive theory, a backward Euler method is applied. As a matter of fact, the application of the original backward Euler scheme does not preserve the property of the viscoplastic deformations to be isochoric. A major topic of the present article is the development of an improved numerical integrator on the basis of the original backward Euler method, which preserves exactly the incompressibility of the occurring viscoplastic deformations.  相似文献   

13.
This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals. The project supported by National Natural Science Foundation of China (9713008) and Zhejiang Natural Science Foundation Special Funds No. RC.9601  相似文献   

14.
A procedure for determining a phenomenological elastic/viscoplastic nonassociated constitutive equation for geomaterials is presented. For this purpose, triaxial test data obtained with either a “true” or a classical triaxial device are necessary. The constitutive equation is aimed at describing such geomaterial properties as creep, irreversible compressibility or dilatancy, work-hardening, damage, and failure. Long-term failure can also be described with this model. According to the procedure, first the elastic parameters are determined from unloading tests (which follow short-term creep tests), then the yield function is determined, and finally the viscoplastic potential. No a priori assumption is made concerning the form of the yield function or of the viscoplastic potential; their expressions are obtained from the data by using the procedure suggested here. Examples for sand and rock salt are given. Comparisons of the model predictions with the experimental data are discussed.  相似文献   

15.
Two one-parameter series of real solutions describing the process of deceleration and acceleration of a viscoplastic medium under the action of a time-varying pressure gradient are obtained. The problem of axisymmetric unsteady viscoplastic flow is reduced to the solution of the Stefan boundary-value problem for the heat conduction equation with a nonlinear condition on the boundary of the quasi-rigid core. By a self-similar change of variables the problem can be reduced to a second-order ordinary differential equation. The solutions of this equation are represented in terms of Bessel and elementary functions. As a result, two one-parameter series of solutions, the first of which describes the acceleration and the second the deceleration of a viscoplastic medium in a pipe under the action of a time-varying pressure gradient are obtained.  相似文献   

16.
In the framework of viscoplastic theory many different laws were developed, accounting for material behaviors like creep, relaxation or evolution of overstresses. Though each model is able to predict in uni-axial material tests the values of stresses depending on plastic strains and plastic strain rates the question is if solutions of simulations are still realistic if the viscoplastic law is applied on structural deformations. In the present study strain rate sensitive metal plates are subjected to shock waves. The purpose is to compare simulation results obtained with different elastic–viscoplastic laws to experiments in order to determine the most appropriate material model. By subjecting circular metal plates experimentally to shock wave loadings realistic deformation histories are measured. The measurements are compared to simulation results obtained with different viscoplastic laws. The aim is to find out the accuracy of each model concerning the predictions of displacements, shape formings, spread of plastic zones and evolutions of inner bending moments.  相似文献   

17.
The first formulation of a phase field model accounting for size-dependent viscoplasticity is developed to study materials in which microstructure evolution and viscoplastic behavior are strongly coupled. Plasticity is introduced using a continuum strain gradient formalism which captures the size effect of the viscoplastic behavior. First, the influence of this size effect on the mechanical behavior of the material is discussed in static microstructures. Then, the dynamic coupling between microstructure evolution and viscoplastic activity is addressed and illustrated by the rafting of the microstructure observed in Ni-base superalloys under creep conditions. It is found that the plastic size effect has only a moderate impact on the shape of the rafts but is crucial to reproduce the macroscopic mechanical behavior of that particular material.  相似文献   

18.
SnPb钎料合金的粘塑性Anand本构方程   总被引:8,自引:0,他引:8  
采用统一型粘塑性本构 Anand方程描述了电子封装焊点 Sn Pb钎料合金的非弹性变形行为 ,基于 Sn Pb 合金的弹塑性蠕变本构方程和实验数据 ,确定了6 2 Sn36 Pb2 Ag、6 0 Sn40 Pb、96 .5 Sn3.5 Ag和 97.5 Pb2 .5 Sn四种钎料合金 Anand方程的材料参数 ,验证了粘塑性 Anand本构方程对 Sn Pb合金在恒应变速率和稳态塑性流动条件下应力应变行为的预测能力。结果表明 ,Anand方程能有效描述 Sn Pb钎料的粘塑性本构行为 ,并可应用于电子封装 Sn Pb焊点的可靠性模拟和失效分析  相似文献   

19.
For the subject media the constitutive laws remaining invariant under the dilatation and spiral groups are determined. Then exact invariant solutions are constructed for a classical (linear) material, for a quadratic constitutive law and for a linear viscoelastic material. Lastly, a viscoplastic material is studied in the light of group analysis and the machinery to determine the solution (numerically) for a variety of viscoplastic problems is established.  相似文献   

20.
Numerical simulations have been used to study the flow of a Bingham viscoplastic fluid around a circular cylinder in an infinite medium with negligible inertia effects. Papanastasiou's regularisation technique has been adopted to approximate the model. The case corresponding to preponderant plasticity effects has been particularly studied and convergence of the solutions examined in detail. The flow kinematics and stresses have been determined. The rigid zones have been identified and characterised. At large Oldroyd numbers, when plasticity effects become preponderant, a viscoplastic boundary layer appears around the cylinder. The characteristics of this viscoplastic boundary layer are quantified. The results are compared with existing theoretical results, concerning particularly the predictions of the viscoplastic boundary layer theory and the plasticity theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号