首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A rapid synthesis method for the preparation of PtRu colloids and their subsequent deposition on high surface area carbons is presented. The reaction mechanism is shown to involve the oxidation of the solvent, ethylene glycol, to mainly glycolic acid or, depending on the pH, its anion, glycolate, while the Pt(+IV) and Ru(+III) precursor salts are reduced. Glycolate acts as a stabilizer for the PtRu colloids and the glycolate concentration, and hence the size of the resulting noble metal colloids is controlled via the pH of the synthesis solution. Carbon-supported PtRu catalysts of controlled size can be prepared within the range of 0.7-4 nm. Slow scan X-ray diffraction and high-resolution transmission electron microscopy show the PtRu catalysts to be crystalline. The Ru is partly dissolved in the face-centered cubic Pt lattice, but the catalysts also consist of a separate, hexagonal Ru phase. The PtRu catalysts appear to be of the same composition independent of the catalyst size in the range of 1.2-4 nm. Particular PtRu catalysts prepared in this work display enhanced activities for the CH(3)OH electro-oxidation reaction when compared to two commercial catalysts.  相似文献   

2.
Nanostructured PtRu/C catalysts have been prepared from a water-in-oil pseudomicroemulsion with the aqueous phase of a mixed concentrated solution of H(2)PtCl(6), RuCl(3), and carbon powder, oil phase of cyclohexane, ionic surfactant of sodium dodecylbenzene sulfonate (C(18)H(29)NaO(3)S), and cosurfactant n-butanol (C(4)H(10)O). Two different composing PtRu/C nanocatalysts (catalyst 1, Pt 20 wt %, Ru 15 wt %; catalyst 2, Pt 20 wt %, Ru 10 wt %) were synthesized. The catalysts were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the particles were found to be nanosized (2-4 nm) and inherit the Pt face-centered cubic structure with Pt and Ru mainly in the zero valance oxidation state. The ruthenium oxide and hydrous ruthenium oxide (RuO(x)()H(y)()) were also found in these catalysts. The cyclic voltammograms (CVs) and chronoamperometries for methanol oxidation on these catalysts showed that catalyst 1 with a higher Ru content (15 wt %) has a higher and more durable electrocatalytic activity to methanol oxidation than catalyst 2 with low Ru content (10 wt %). The CV results for catalysts 1 and 2 strongly support the bifunctional mechanism of PtRu/C catalysts for methanol oxidation. The data from direct methanol single cells using these two PtRu/C as anode catalysts show the cell with catalyst 1 has higher open circuit voltage (OCV = 0.75 V) and maximal power density (78 mW/cm(2)) than that with catalyst 2 (OCV = 0.70 V, P(max) = 56 mW/cm(2)) at 80 degrees C.  相似文献   

3.
PtRu nanoparticles supported on Vulcan XC-72 carbon and carbon nanotubes were prepared by a microwave-assisted polyol process. The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which were uniformly dispersed on carbon, were 2-6 nm in diameter. All PtRu/C catalysts prepared as such displayed the characteristic diffraction peaks of a Pt face-centered cubic structure, excepting that the 2theta values were shifted to slightly higher values. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The electro-oxidation of methanol was studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both PtRu/C catalysts had high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a direct methanol fuel cell single stack test cell using the Vulcan-carbon-supported PtRu alloy as the anode catalyst showed high power density.  相似文献   

4.
采用电化学沉积技术在3-氨丙基三甲基硅氧烷修饰的多孔氧化铝膜板中制备了具有不同Pt/Ru原子比的双元Pt/Ru阵列纳米管电极(NTAEs)。分别用X-射线衍射和扫描电镜表征了催化剂结构和形态。电化学结果表明:通过控制前驱沉积液的浓度可得到不同PtRu原子比的NTAEs。所制备的Pt 或 Pt/Ru合金阵列纳米电极的真实表面积大,催化活性强,有利于物质传输,对甲醇电氧化显示出显著的催化性能。实验中还系统研究了催化剂组成与CO和CH3OH电催化氧化性能的关系,发现Pt/Ru=50:50的阵列纳米管电极对CO电氧化显示出最好的催化活性;对甲醇电氧化,则Ru原子比为40%的催化剂显示最佳催化性能。  相似文献   

5.
Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ~0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.  相似文献   

6.
直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征   总被引:22,自引:2,他引:22  
用三种方法制备了PtRu/C[Pt和Ru质量分数分别为20%和10%,记为PtRu/C(20%-10%)]甲醇阳极催化剂,通过X射线衍射(XRD)和透射电镜(TEM)考察了PtRu/C催化剂的粒子大小和晶格参数的变化,利用单电池实验考察了催化剂在直接甲醇燃料电池中的催化活性.结果表明,改变溶剂的组成提高了贵金属在活性炭表面的分散度,并改善了PtRu间的相互作用,用乙二醇/水/异丙醇混合溶剂制备的PtRu催化剂金属颗粒较小,PtRu间的相互作用较强,以该催化剂作甲醇阳极的直接甲醇燃料电池的性能较好.  相似文献   

7.
Methanol electrooxidation in a 0.5 M sulfuric acid electrolyte containing 1.0 M CH3OH was studied on 30% Pt/carbon and 30% PtRu/carbon (Pt/Ru = 1:1) catalysts using X-ray absorption spectroscopy (XAS). Absorption by Pt and Ru was measured at constant photon energy in the near edge region during linear potential sweeps of 10-50 mV/s between 0.01 and 1.36 V vs rhe. The absorption results were used to follow Pt and Ru oxidation and reduction under transient conditions as well as to monitor Ru dissolution. Both catalysts exhibited higher activity for methanol oxidation at high potential following multiple potential cycles. Correlation of XAS data with the potential sweeps indicates that Pt catalysts lose activity at high potentials due to Pt oxidation. The addition of Ru to Pt accelerates the rate of methanol oxidation at all potentials. Ru is more readily oxidized than Pt, but unlike Pt, its oxidation does not result in a decrease in catalytic activity. PtRu/carbon catalysts underwent significant changes during potential cycling due to Ru loss. Similar current density vs potential results were obtained using the same PtRu/carbon catalyst at the same loading in a membrane electrode assembly half cell with only a Nafion (DuPont) solid electrolyte. The results are interpreted in terms of a bifunctional catalyst mechanism in which Pt surface sites serve to chemisorb and dissociate methanol to protons and carbon monoxide, while Ru surface sites activate water and accelerate the oxidation of the chemisorbed CO intermediate. PtRu/carbon catalysts maintain their activity at very high potentials, which is attributed to the ability of the added Ru to keep Pt present in a reduced state, a necessary requirement for methanol chemisorption and dissociation.  相似文献   

8.
采用两步浸渍-还原法制备了一种具有高Pt利用效率,高性能的Pt修饰的Ru/C催化剂(Ru@Pt/C).对于甲醇的阳极氧化反应,该催化剂的单位质量铂的催化活性分别为Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的1.9、1.5和1.4倍;其电化学活性比表面积分别为Pt/C和自制PtRu/C的1.6和1.3倍.尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的If/Ib的2.7倍,表明催化剂具有很好的抗甲醇氧化中间体毒化的能力.另外,Ru@Pt/C催化剂的稳定性也高于Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的稳定性.采用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征,Pt在Ru表面的包覆结构得到了印证.Ru@Pt/C的高铂利用效率、高性能和高抗毒能力使其有望成为一种理想的直接甲醇燃料电池电催化剂.  相似文献   

9.
The cluster complex Pt2Ru4(CO)18 was used as a precursor to prepare a 60 wt% 1:2 Pt:Ru nanoparticles on carbon (PtRu/C) for use as an electrocatalyst for methanol oxidation. This bimetallic carbonyl cluster complex was found to provide smaller, more uniform bimetallic nanoparticle that exhibited higher electrocatalytic activity than a 60 wt% 1:1 Pt:Ru commercial catalyst from E-Tek. Using bimetallic cluster precursors simplifies the synthetic procedures by reducing the need for high temperature reduction and assures a more intimate mixing of the two different metals. Transmission electron microscopy (TEM) images of the catalyst obtained from the cluster precursor showed bimetallic nanoparticles having a narrow size range of 2–3 nm that were dispersed uniformly over the surface of the support. Images of the commercial catalyst showed particles 3–4 nm in diameter that tended to agglomerate near the edges of the carbon support particles. Cyclic voltammograms of methanol oxidation from the two catalysts showed significantly higher activity for the cluster-derived catalyst. The onset potential for methanol oxidation for the cluster-derived catalyst was approximately 170 mV lower than that of the commercial catalyst at 100 A/g Pt, and approximately 250 mV lower at 400 A/g Pt. * This report is dedicated to Prof. Günter Schmid on the occasion of his 70th birthday.  相似文献   

10.
Sonochemically prepared PtRu (3 : 1) and Johnson Matthey PtRu (1 : 1) were analyzed by X-ray absorption spectroscopy in operating liquid feed direct methanol fuel cells. The total metal loadings were 4 mg cm(-2) unsupported catalysts at the anode and cathode of the membrane electrode assembly. Ex situ XRD lattice parameter analysis indicates partial segregation of the Ru from the PtRu fcc alloy in both catalysts. A comparison of the in situ DMFC EXAFS to that of the as-received catalyst shows that catalyst restructuring during DMFC operation increases the total metal coordination numbers. A combined analysis of XRD determined grain sizes and lattice parameters, ex situ and in situ EXAFS analysis, and XRF of the as-received catalysts enables determination of the catalyst shell composition. The multi-spectrum analysis shows that the core size increases during DMFC operation by reduction of Pt oxides and incorporation of Pt into the core. This increases the mole fraction of Ru in the catalyst shell structure.  相似文献   

11.
PtRu alloy nanoparticles (24 +/- 1 wt %, Ru/Pt atomic ratios = 0.91-0.97) supported on carbon nanofibers (CNFs) were prepared within a few minutes by using a microwave-polyol method. Three types of CNFs with very different surface structures, such as platelet, herringbone, and tubular ones, were used as new carbon supports. The dependence of particles sizes and electrochemical properties on the structures of CNFs was examined. It was found that the methanol fuel cell activities of PtRu/CNF catalysts were in the order of platelet > tubular > herringbone. The methanol fuel cell activities of PtRu/CNFs measured at 60 degrees C were 1.7-3.0 times higher than that of a standard PtRu (29 wt %, Ru/Pt atomic ratio = 0.92) catalyst loaded on carbon black (Vulcan XC72R) support. The best electrocatalytic activity was obtained for the platelet CNF, which is characterized by its edge surface and high graphitization degree.  相似文献   

12.
Platinum-ruthenium catalysts supported on carbon (PtRu/C) have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET), X-ray photoelectron spectroscopy (XPS) and in proton exchange membrane (PEM) fuel cell tests. The results indicate the presence of strong metal-carbon interactions, which hinder the formation of a single-phase face-centered cubic (fcc) PtRu alloy. The particle size of the PtRu/C catalysts was smaller than both carbon-supported platinum (Pt/C) and ruthenium (Ru/C) catalysts. In the bimetallic electrocatalysts the intercrystallite distance decreased with respect to pure Pt and Ru metals. PEM fuel cell tests in H2/air operation mode revealed a decrease of performance with increasing carbon content of the catalyst, at a fixed Pt loading. In H2 + 100 ppm CO/air operation mode the maximum performance of the PEM fuel cell was attained at 0.63 atomic fraction Ru. Received: 2 December 1999 / Accepted: 27 January 2000  相似文献   

13.
In this paper, we reported an improved process for the preparation of PtRu/CNTs, which involves the adsorption of Pt and Ru ions on CNTs in aqueous solution and the reduction of the adsorbed Pt and Ru ions on CNTs in ethylene glycol. The surface morphology, structure, and compositions of the prepared catalyst were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive spectrometer. TEM observation showed that the particles size of the prepared PtRu alloy was in the range of 2–5 nm, XRD patterns confirmed a face-centered cubic crystal structure. The activity and stability of the prepared catalyst toward methanol oxidation were studied in 0.5 M H2SO4 + 1 M CH3OH solution by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The electrochemical results showed that the prepared catalyst exhibited higher activity and stability toward methanol oxidation than commercial PtRu/C with the same loading amount of Pt and Ru.  相似文献   

14.
碳载Pt和PtRu催化剂的甲醇电氧化比较   总被引:3,自引:0,他引:3  
利用电化学方法对商用Pt/C和PtRu/C催化剂在酸性介质中的甲醇电氧化进行了比较研究.动电位和恒电位氧化实验结果皆表明PtRu/C比Pt/C对甲醇电催化活性高.PtRu合金的形成不仅改变了催化剂表面对氢的吸附性质,而且使氧化物还原峰电位向阴极方向移动.Ru与甲醇的相互作用为温度活化过程,需要较高的温度.  相似文献   

15.
In the hydrosilylation of 1-hexene with dichlorosilane, many phosphine complexes of group VIII metals, Ni, Ru, Rh, PD and Pt, were found to be active catalysts, giving n-hexyldichlorosilane exclusively. Tris(triphenylphosphine)chlororhodium was found to be the most convenient and effective catalyst for the selective synthesis of mono-organodichlorosilanes.  相似文献   

16.
The electrocatalysts of Pt/C,PtRu/C and Ru/C were prepared by the impregnation method.The facet characterization.The dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy,X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals.The results show that the particle size was in nanometer range and the binary metals have come into being an alloy.The platinum in the catalysts existed in zero valency.The valency of the ruthenium on the surface is different from that in the body,while the ruthenium on the surface existed in oxide-form.PtRu/C and Pt/C are of good activity of the electrooxidation of hydrogen except Ru/C.PtRu/C is more tolerant of CO than Pt/C,and CO is only adsorbed on Pt.  相似文献   

17.
高负载率纳米Pt-Ru/C催化剂的制备和表征   总被引:2,自引:0,他引:2  
宗晔  王宇  林昌健 《物理化学学报》2006,22(11):1305-1309
以Vulcan XC-72R碳黑为载体, 通过在含十二烷基硫酸钠(SDS)的乙二醇溶液中直接还原氯铂酸和三氯化钌, 制备了负载率为60%的纳米PtRu/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)分析结果表明, SDS的加入可显著改善PtRu纳米颗粒在载体表面分散性, 平均粒径达到2.7 nm. 电化学循环伏安法(CV)测试的结果显示, 利用这种方法制备的纳米PtRu/C催化剂对于甲醇氧化具有较强的抗中毒能力和较高的电催化活性.  相似文献   

18.
Platinum/ruthenium nanoparticles were decorated on carbon nanotubes (CNT) in supercritical carbon dioxide, and the nanocomposites were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images show that the particles size is in the range of 5-10 nm, and XRD patterns show a face-centered cubic crystal structure. Methanol electrooxidation in 1 M sulfuric acid electrolyte containing 2 M methanol were studied onPtRu/CNT (Pt, 4.1 wt%; Ru, 2.3 wt%; molar ratio approximately Pt/Ru = 45:55) catalysts using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. All the electrochemical results show that PtRu/CNT catalysts exhibit high activity for methanol oxidation which resulted from the high surface area of carbon nanotubes and the nanostructure of platinum/ruthenium particles. Compared with Pt/CNT, the onset potential is much lower and the ratio of forward anodic peak current to reverse anodic peak current is much higher for methanol oxidation, which indicates the higher catalytic activity of PtRu/CNT. The presence of Ru with Pt accelerates the rate of methanol oxidation. The results demonstrated the feasibility of processing bimetallic catalysts in supercritical carbon dioxide for fuel cell applications.  相似文献   

19.
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.  相似文献   

20.
Platinum and ruthenium nanoparticles that are uniformly dispersed on multiwalled carbon nanotubes (MWNTs) were synthesized by vacuum pyrolysis using Pt(acac)2 and Ru(acac)3 as the metal precursors. The resulting nanocomposites were characterized by transmission electron microscopy and X-ray diffraction. The Pt, Pt45Ru55, and Ru nanoparticles had mean diameters of 3.0 +/- 0.6, 2.7 +/- 0.6, and 2.5 +/- 0.4 nm and the same mole number as their metal precursors at 500 degrees C. The electrocatalytic activity of the Pt/MWNTs and PtRu/MWNTs was investigated at room temperature by cyclic voltammetry and chronoamperometry. All of the electrochemical results showed that the PtRu/MWNTs exhibited a high level of catalytic activity for methanol oxidation as a result of the large surface area of the supporting carbon nanotubes and the wide dispersion of the Pt and Ru nanoparticles. Compared with the Pt/MWNTs, the onset potential for methanol oxidation of the PtRu/MWNTs was significantly lower, and the ratio of the forward anodic peak current to the reverse anodic peak current during methanol oxidation was somewhat higher. The Pt45Ru55/MWNTs displayed the best electrocatalytic activity of all of the carbon-nanotube-supported Pt and PtRu catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号