首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
通过浸渍法制备以氟化钾为活性体、电石渣为载体的负载型钙基酯交换催化剂,并在借助X射线荧光光谱仪、热分析天平、X射线衍射仪、氮气吸附-脱附仪、扫描电子显微镜以及哈米特指示剂法等手段对催化剂表征,以及气相色谱仪对原料油成分分析的基础上,通过间歇式酯交换实验系统,从催化剂添加量、醇油物质的量比、酯交换温度与时间等影响因素出发,研究了电石渣负载氟化钾催化花生油与甲醇酯交换的特性。电石渣负载氟化钾后,产生KCaF3、CaF2以及KF等新物相,并且在催化剂添加量为5%、反应温度为62℃、反应时间为2 h以及醇油物质的量比为15的酯交换条件下,能够取得91.58%的甘油收率,相比较氢氧化钙和未有活性体负载的电石渣,其催化酯交换性能得到提高。  相似文献   

2.
A simple and flexible method was used to develop new alkaline polymer catalyst through radiation induced grafting of glycidylmethacrylate (GMA) onto polyethylene/polypropylene (PE/PP) nonwoven sheet followed by amination reaction and alkalisation. The chemical structure and morphology of catalyst was evaluated by Fourier transform-infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). The catalyst was examined for the transesterification of triacetin/methanol mixtures in a batch mode and the obtained methyl ester was detected by GC-MS. In order to optimize the reaction parameters towards getting the higher yield, an artificial neural network (ANN) was used to develop a non-linear model correlating the four independent reaction parameters including catalyst dosage, triacetin/methanol molar ratio, reaction time and temperature. The maximum conversion obtained via the simulated annealing (SA) algorithm was 86.2% at the optimal conditions of 5.01 wt% catalyst dosage, triacetin/methanol 1:12 molar ratio, 8 h reaction time and 62.8°C temperature. Upon using these optimal conditions in the experimental reaction, the conversion of as high as 85% was achieved. These results suggest that the simply modified low cost PE/PP fibrous sheet has a potential to catalyze biodiesel production. Moreover, the combined ANN-SA modelling method is highly effective in predicting the conversion of transesterification reaction and optimizing its parameters.  相似文献   

3.
A catalyst based on MoO3 was synthesized by a simple and fast pilot-scale combustion reaction method and applied to the conversion of soybean oil to biodiesel via transesterification. For that, the statistical analysis of the catalyst amount and temperature, factors that influence the process, was evaluated by means of central composite design 22. MoO3 was characterized in terms of structure by X-ray diffraction (XRD), textural characterization Brunauer-Emmett-Teller (BET), density by helium pycnometry (DE), particle size analysis (DG) and acidity tests by temperature-programmed desorption of ammonia (NH3-TPD), chemical analysis by X-ray fluorescence (EDX), morphology by scanning electron microscopy (SEM) and catalytic properties. The transesterification products were characterized by gas chromatography (GC), acidity index (AI) and kinematic viscosity (KV). The results indicate the catalyst formation with a surface area of 1.36 m2g?1, and density of 4.5 g/cm3 which consists of a single crystalline phase of orthorhombic configuration, with total NH3 acidity of 33.61 μ.mol/g. Morphological characterization revealed that the catalyst is formed by irregular plates of various sizes and shapes, with a wide sizes range of agglomerated particles. In the soybean oil transesterification reactions, the catalyst was active showing 96.9% conversion to ethyl esters. The experimental design was meaningful and predictive, with a reliability level of 95%. The statistical analysis identified temperature as a significant variable for the adopted planning. To conclude, a new single-phase catalyst (α-MoO3) has been developed and successfully applied to the biodiesel Synthesis from soybean oil. These results have a positive and promising impact for biodiesel production by transesterification of soybean oil against ethanol.  相似文献   

4.
Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.  相似文献   

5.
Cellulose aliphatic esters (CEs) are important cellulose derivatives that have been widely used in many fields such as plastics, textiles, membranes, etc. However, in traditional methods, long pretreatment and reaction times limit the manufacture of CEs and their widespread application. Herein, a very efficient method for the preparation of CEs in a heterogeneous system was developed. This method involved the transesterification of cellulose with vinyl esters (from C4 to C14) in dimethylsulfoxide under the catalysis of aqueous NaOH. For better understanding of this new reaction system, factors such as the water content, amount of catalyst, reaction temperature and molar ratio of vinyl acetate to the anhydroglucose unit were explored. Results obtained from FT-IR, 1H and 13C NMR spectroscopies confirmed that CEs could be synthesized at 100 °C within 5 min. High water content or excessive amounts of NaOH were detrimental to the synthesis of CEs. Results from small-angle X-ray diffraction showed that the interplanar spacings of these CEs showed an increasing trend with the length of the aliphatic chain. Thermogravimetric analysis and derivative thermogravimetric analysis showed that CEs had higher thermal stability than cellulose. This work provides a new and highly efficient method to synthesize various CEs.  相似文献   

6.
Fuel cell electrodes were prepared from Pt nanocluster activated hierarchical microporous-mesoporous carbon powders. The carbon supports were synthesized from molybdenum carbide applying the high-temperature chlorination method. Six different synthesis temperatures within the range from 600 to 1000 °C were used for preparation of carbon supports. Thermogravimetric analysis, X-ray diffraction, low-temperature nitrogen sorption, and high-resolution scanning electron microscopy methods were used to characterize the structure of the electrode materials and symmetrical membrane electrode assemblies (MEAs). The MEAs prepared were used to conduct the proton exchange membrane fuel cell (PEMFC)single-cell measurements. The polarization and power density curves for single cells were calculated to evaluate the activity of the catalyst materials synthesized. The electrochemically active surface area (from 2.4 to 11.9 m2 g?1) was obtained in order to estimate the contact surface areas of platinum and Nafion® electrolyte. The values of the electrolyte resistance, polarization resistance, and cell degradation rate were calculated from electrochemical impedance spectroscopy data. The carbon materials synthesized within temperature range from 600 to 850 °C were found to be the most suitable supports for PEMFCs, having higher maximum power density values and better stability (cell potential degradation 240 μV h?1) than commercial carbon-based (Vulcan XC72; 670 μV h?1) single cells.  相似文献   

7.
本文研究了不同石墨烯基材料用作转酯化反应制备生物柴油催化剂的性能.将磺酸基或磷酸盐基嫁接到热还原的氧化石墨烯表面,制备了固体酸石墨烯基样品.并采用扫描电镜、X射线衍射、热重分析、X射线光电子能谱、N_2吸附-脱附法、电位滴定法、元素分析以及红外光谱法对所制样品进行了全面表征.将所制样品用于130℃带压力的条件下菜籽油与甲醇转酯化反应中,并将其催化活性与商用的多相酸催化剂Amberlyst-15的进行了比较.结果表明,所有改进的样品在转酯化反应中均表现出催化活性,但各样品上生物柴油产率差别较大.其中以苯二氮磺酸基功能化的热还原氧化石墨烯样品上脂肪酸甲酯产率最高,反应6 h后达70%,也明显高于商用催化剂Amberlyst-15.该样品也表现出良好的重复使用性能.  相似文献   

8.
造纸白泥催化花生油与甲醇酯交换的特性研究   总被引:2,自引:0,他引:2  
从催化剂用量、酯交换温度及时间、醇油物质的量比等影响因素出发,并借助热重、X射线荧光光谱、X射线衍射、氮气吸附与哈米特指示剂等催化剂表征手段,研究造纸白泥催化花生油与甲醇的酯交换特性.造纸白泥通过800 ℃煅烧-常温水合-600 ℃活化处理后,成分以CaO为主、比表面积为7.28 m2/g、碱性强度为9.8相似文献   

9.
以草酸盐为前驱体采用两步法制备了一种以CaO-MgO作为活性组分,以CoFe_2O_4作为磁核的磁性固体碱催化剂,并用于大豆油与甲醇的酯交换反应合成生物柴油。对制备的磁性固体碱催化剂进行了磁滞回线、X-射线衍射(XRD)、CO_2-TPD及透射电镜(TEM)表征。考察了不同核壳物质的量比、焙烧温度、反应温度、反应时间、醇油物质的量比以及催化剂用量等因素对大豆油转化为生物柴油产率的影响。结果表明,采用核壳物质的量比为1∶6、焙烧温度为700℃所制备的CaO-MgO@CoFe_2O_4催化剂,当醇油物质的量比为12、催化剂用量为大豆油质量的1.0%时,在65℃下反应时间3 h,生物柴油收率高达97.1%。该催化剂具有较好的重复利用性能,重复利用四次后生物柴油的收率仍可达90%。  相似文献   

10.
In this research, a solid 1%Li/Ca-La mixed oxide catalyst was prepared using co-precipitation method followed by wet impregnation. The prepared catalyst was used in the transesterification reaction of canola oil and methanol for biodiesel synthesis. The effects of calcination and reaction temperatures were investigated on the activity of the catalyst. In addition, rate of the reaction was studied through a kinetic model for which parameters were determined. Surface properties and structure of the catalyst were characterized through the powder X-ray diffraction (XRD), thermogravimetry/derivative thermogravimetry (TG/DTG), and Fourier transform infrared spectroscopy analysis. All these emphasized that the performance of the catalyst corresponded to the generation of the active sites and their thermal activation.  相似文献   

11.
Tungsten carbide and graphitic carbon (WC/GC) composite has been synthesized by a simple solid-state pyrolysis method from an in situ route. The results indicate that the synthesized sample has a large specific surface area (S BET) of 198 m2 g?1, and the WC nanoparticles (NPs) with a narrow particle size are well dispersed on the graphitic carbon. After loading Pt nanoparticles, the prepared Pt/WC/GC catalyst exhibits a mass activity of 416.1 mA mg?1 Pt toward methanol electrooxidation, which is much higher than that of commercial Pt/C (JM) (231.2 mA mg?1 Pt). Moreover, the onset potential is 100 mV more negative than that on Pt/C (JM) electrocatalyst. In addition, the Pt/WC/GC catalyst has stronger resistance to CO poisoning than the commercial Pt/C (JM). Its superior electrochemical performance could be attributed not only to the synergistic effect between Pt and WC NPs but also to the excellent electrical conductivity of GC and proper porous structure for desirable mass transportation in a porous electrode.  相似文献   

12.
Dogrukol-Ak  D.  Dal  A. G.  Tun&#;el  M. 《Chromatographia》2007,66(1):159-163

A validated capillary zone electrophoretic method for analysis of sotalol is described. Analysis was performed in a fused-silica capillary with 20 mM phosphate buffer (pH 4.20) containing 10% (v/v) acetonitrile as background electrolyte. The applied potential was +20 kV, the injection time 0.08 min, signal detection was at 200 nm, and 3,4-dihydoxybenzylamine was used as internal standard. The method was validated over the concentration range 1.98 × 10−5 to 9.90 × 10−5 M; repeatability was good and there was no interference. Highly satisfactory results were obtained from analysis of tablets and serum, indicating the method is specific, accurate, and precise, and suitable for routine analysis of sotalol in pharmaceutical tablets and in pharmacokinetic studies.

  相似文献   

13.
In this work, CaO derived from the carbide slag (CaO?Ccarbide slag) as a kind of typical industrial waste was used to capture CO2 during the calcination/carbonation cycles. The carbonation kinetics and cyclic carbonation behavior of CaO?Ccarbide slag were investigated in a thermogravimetric analyzer. The chemical reaction activation energy and the product layer diffusion activation energy for carbonation of CaO?Ccarbide slag are 12.46 and 36.83?kJ?mol?1, respectively, which are significantly less than those for carbonation of CaO derived from the limestone (CaO?Climestone). CaO?Ccarbide slag shows higher carbonation conversion than CaO?Climestone after enough reaction time and at the same number of cycles. Moreover, the calcination temperature and CO2 concentration in the carbonation atmosphere have important effect on the carbonation behavior of CaO?Ccarbide slag. The BET surface area of CaO?Ccarbide slag is 1.6 times as large as that of CaO?Climestone after 1 cycle and the average pore size of CaO?Ccarbide slag is much smaller. In addition, the carbide slag contains much more Al2O3 than most of the limestones. These are reasons why carbide slag as a precursor can retain greater carbonation conversion than limestone in calcination/carbonation cycles.  相似文献   

14.
Re-use of a catalyst is an important task, which is usually achieved by loading it on easily separable supports such as magnetic substrates. However, we demonstrate here the process of easy and fast catalyst separation from a reaction medium by loading it onto an economically feasible and microscopically high surface substrate of filter paper (FP) made up of cellulose microfibers as catalyst support. To achieve the goal, we coated chitosan (CH) on filter paper (CH-FP) to impart a high affinity of the substrate for metal ion absorption. AgNO3 dissolved in water with a 0.1 M concentration was used as the Ag ion carrier solution, and CH-FP strips with known rectangular dimensions were submerged into it for the metal ion absorption. The metal ion-laden CH-FP strips were dip treated with sodium borohydride (NaBH4) aqueous solution to prepare Ag-nanoparticle loaded CH-FP (Ag/CH-FP). X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the formation of the Ag/CH-FP hybrid. Ag/CH-FP morphology was examined through scanning electron microscopy analysis, which showed the presence of Ag nanoparticles attached to the cellulose microfibers. The prepared Ag/CH-FP was employed as a dip catalyst for the degradation of nitroarene compounds of 2-nitophenol (2-NP) and 4-nitrophenol (4-NP) by NaBH4. Remarkably, the rate constants for 4-NP and 2-NP were 3.9 × 10?3 and 1.7 × 10?3 s?1, respectively. In addition, we discussed the ease of the catalyst retrievability from the reaction mixture and its re-usability.  相似文献   

15.
MoO3催化碳酸二甲酯与乙酸苯酯合成碳酸二苯酯   总被引:4,自引:0,他引:4  
采用焙烧法制备了MoO3催化剂并将其用于碳酸二甲酯(DMC)与乙酸苯酯(PA)合成碳酸二苯酯(DPC)反应,考察了焙烧温度对催化荆性能的影响,并用X射线衍射(XRD)对催化剂结构进行了表征.结果发现,在400或500℃焙烧的催化剂具有良好的催化性能,DMC转化率为73.9%,DPC和甲基苯基碳酸酯的选择性分别为39.5%和56.5%.XRD结果表明,该催化剂物相组成为正交晶系MoO3,且(021)或/和(110)晶面有利于酯交换反应.催化剂使用5次后DMC转化率从73.9%降至10.2%,多次重复使用后的催化剂在窄气气氛中于400或500℃焙烧即可再生,再生后催化剂的性能几乎和新鲜催化剂相当.  相似文献   

16.
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg−1 was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z = 44); no methylformate (m/z = 60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells. In memoriam  相似文献   

17.
The present paper deals with differential thermal analysis studies conducted to find out the onset temperature for silicothermic reduction of MoO2 to Mo. The reaction kinetics of Si–MoO2 system has been analyzed by a model-free Kissinger method. X-ray diffraction analysis has confirmed the formation of Mo metal and SiO2 as the slag phase after silicothermic reduction of MoO2. The activation energy for silicothermic reduction of MoO2 to Mo was evaluated to be 309 kJ mol?1.  相似文献   

18.
A new, simple, and fully validated gas chromatography–mass spectrometry (GC–MS) method was presented for quantitative analysis of milnacipran (MNP) in human plasma. MNP was efficiently derivatized with N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) before analysis. The role of catalyst, temperature, time, solvent on the trimethylsilylation reaction were evaluated. The proposed method was fully validated by assessment of the following parameters: limits of detection and quantitation, precision, accuracy, linearity, specificity, stability, extraction recovery and robustness/ruggedness. The limit of quantitation (LOQ) was 30 ng mL?1. The calibration curve was linear (r 2 > 0.9988) in the range 30–500 ng mL?1. The method was found specific, precise, accurate, selective and reliable according to validation data. This developed method was successfully applied to determine the steady state concentration of MNP in patients.  相似文献   

19.
周喜  葛鑫  唐荣芝  陈彤  王公应 《催化学报》2014,35(4):481-489
制备了表面修饰多壁碳纳米管负载TiO2的催化剂,并将其应用于碳酸二甲酯与苯酚的酯交换反应. 采用X射线电子能谱、透射电子显微镜、低温N2吸附-脱附和X射线衍射等对催化剂进行了表征. 结果表明,以低浓度的氨水(0.4%)代替去离子水作为沉淀剂时,制备的催化剂显示出更好的催化活性、分离性与重复使用性. 考察了TiO2负载量、催化剂用量及反应时间对反应性能的影响. 在最佳反应条件下,苯酚转化率为42.5%,碳酸甲苯酯与碳酸二苯酯的总选择性达到99.9%以上. 经过4次重复使用后,催化剂的活性略有下降.  相似文献   

20.
Biodiesel is an alternative to petroleum-derived diesel fuel; development of a high-efficiency base catalyst to be used in heterogeneous biodiesel production is still a challenge. In this paper, a novel solid base catalyst, KF- and CaO-supported montmorillonite (KCa/MMT) was successfully synthesized by a facile impregnation method, and used for producing biodiesel in transesterification of commercial soybean oil with methanol. The catalysts were characterized by X-ray diffraction, carbon dioxide temperature-programmed desorption and scanning electron microscopy. Effects of the parameters, such as the loading amount of KF, the amount of KCa/MMT, and the methanol to oil molar ratios, on the yield of biodiesel were investigated. A maximum biodiesel yield of 98 % was obtained under the optimal reaction conditions. The separated catalyst can be directly used in the next round of reactions and gave a satisfactory yield. Furthermore, analysis of the catalyst's tolerance to oil-containing water or free fatty acids, and a kinetic study were also carried out. Koros–Nowak tests were designed and conducted, and it was proven that the heat and mass transfer were not limited by the reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号