首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered double hydroxides (LDHs) with Mg/Al, Zn/Al, Ca/Al metal hydroxide layers, and a Zn/Ni hydroxy double salt (HDS) were prepared with a common anion, dodecyl sulfate [CH3(CH2)10COO?, DS]. The LDH and HDS additives were melt blended with poly(methyl methacrylate) (PMMA). The dispersion and morphology were characterized via X‐ray diffraction (XRD) and transmission electron microscopy. Mg/Al‐DS and Zn/Al‐DS LDHs were found to form nanocomposites with PMMA, exhibiting good dispersion and some degree of exfoliated morphology for the Zn/Al‐DS/PMMA combination and mixed intercalation and exfoliation behavior for Mg/Al‐DS in PMMA. The Ca/Al‐DS LDH and Zn/Ni‐DS HDS formed microcomposites with PMMA. Thermal stability was investigated via thermogravimetric analysis; each of the additives increased the thermal stability of PMMA. Cone calorimetry was used to measure the fire properties; the microcomposite of Zn/Ni‐DS HDS at 10% loading provided the best improvement in peak heat release rate, with a 40% reduction over the pure polymer. The residue composition after burning the composites was investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The solvent effect on the electronic spectra of di(4-bromophenyl)carbazone and its Cu(II), Zn(II), Cd(II) complexes have been studied by synthesizing and characterizing them by magnetic moment, IR, EPR and 1H NMR spectral measurements. The electric dipole moments of these compounds in the first electronically excited state have been determined. The results indicate that the observed band systems in these compounds may be attributed to pi(*) <-- pi transition.  相似文献   

3.
Optically clear poly(methyl methacrylate) (PMMA) blends with HET‐EG oligoester (synthesized by condensation of chlorendic acid with ethylene glycol) at six different compositions were prepared by bulk polymerization. The effect of HET‐EG in the PMMA matrix on the optical clarity of PMMA blend was measured using ultraviolet‐visible spectroscopic study. The thermal stability of PMMA blends was investigated using differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The parameters to deduce the thermal stability of pure PMMA and PMMA blends were calculated from DSC and TG results. The thermal stability of PMMA was found to increase effectively by loading 5% of HET‐EG oligoester without marring optical clarity. The probable physical and chemical actions of HET‐EG oligoester on the thermal stability of PMMA are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by three different intercalating agents: methacrylatoethyl trimethyl ammonium chloride (DMC), dodecylamine (12CNH), and hexadecyl allyl ammonium chloride (HADC). The structures of the nanocomposites were investigated by X-ray diffraction and transmission electron microscopy, while the interaction between PMMA and MMT was characterized by Fourier transform infrared spectroscopy. The molecular mass of the extracted PMMA was measured by gel permeation chromatography. The thermal stability of PMMA/MMT nanocomposites was evaluated by thermogravimetric and differential scanning calorimetry. The results indicated that PMMA/MMT nanocomposites were successfully prepared and the interaction between PMMA and MMT of PMMA/MMT–HADC nanocomposites was the strongest. The thermal stability of the nanocomposites was improved and found to be optimal for PMMA/MMT–HADC with T 10 increasing to 304 °C, 52 °C higher than that of neat PMMA.  相似文献   

5.
The nano poly(phenylsilsesquioxane) spheres (nano-PPSQ) were prepared by the sol?Cgel method and incorporated into poly(methyl methacrylate) (PMMA) by in situ bulk polymerization of methyl methacrylate. The structure of nano-PPSQ was confirmed by transmission electron microscope and thermogravimetry analysis (TG). The interaction between nano-PPSQ and PMMA was investigated by Fourier transform infrared spectra (FT-IR). The influence of nano-PPSQ on the thermal stability of PMMA was investigated by TG and differential scanning calorimetry (DSC) measurements. The results indicated that nano-PPSQ enhanced the thermal stability and the temperatures of glass transition (T g) of nanocomposites. The effect of the heating rate in dynamic measurements (5?C30?°C?min?1) on kinetic parameters such as activation energy by TG both in nitrogen and air was investigated. The Kissinger method was used to determine the apparent activation energy for the degradation of pure PMMA and nanocomposites. The kinetic results showed that the apparent activation energy for degradation of nanocomposites was higher than that of pure PMMA under air.  相似文献   

6.
张运湘  宋义虎  郑强 《高分子学报》2012,(12):1364-1370
采用熔融共混法制备聚偏氟乙烯/聚甲基丙烯酸甲酯( PVDF/PMMA)共混物,考察其力学性能、耐紫外老化性能、熔体动态流变、结晶与热分解行为.PMMA含量(wPMMA)为10 wt%时,共混物形成均相结构,力学与耐老化性能最好.wPMMA≥20 wt%时,PMMA形成球状聚集体,共混物力学性能与耐候性显著降低.PMMA的存在可提高PVDF的结晶度,降低熔融温度,但不改变PVDF晶体结构.  相似文献   

7.
何玺  罗欢  牛艳华  李光宪 《高分子学报》2021,(1):84-93,I0004
首先通过两步法合成了具有双咪唑环阳离子结构的离子液体(DIL),并将其与单咪唑环离子液体(MIL)进行混合以调控黏度变化,混合离子液体(ILs)的黏度符合对数混合规则且随温度变化呈现Arrhenius型流体行为.进一步通过动态流变、示差扫描量热(DSC)、电化学测试等方法研究了混合离子液体中DIL比例对聚甲基丙烯酸甲酯(PMMA)链缠结和松弛行为的影响,并讨论了PMMA/ILs体系热稳定性、玻璃化转变及离子电导率等的变化.结果表明,DIL独特的双咪唑环结构可与PMMA分子形成更多相互作用位点,从而导致凝聚缠结的形成,很大程度上限制了PMMA分子链的运动和松弛.随DIL含量增加,PMMA/ILs体系的松弛时间、热分解温度、玻璃化转变温度等参数均呈增大趋势,但其离子电导率有所损失,这与DIL较大的分子尺寸和运动能力有关.  相似文献   

8.
The size effect of silica nanoparticles (SiO2) on thermal decomposition of poly(methylmethacrylate) (PMMA) was investigated by the controlled rate thermogravimetry. Thermal degradation temperature of PMMA–SiO2 composites depended on both fraction and size of SiO2, the thermal degradation temperature of 23 nm (diameter) SiO2–PMMA (6.1 wt%) was 13.5 °C higher than that of PMMA. The thermal stabilities of 17 nm SiO2–PMMA (3.2 wt%) and 13 nm SiO2–PMMA (4.8 wt%) were 21 and 23 °C, respectively, higher than that of PMMA without SiO2. The degree of degradation improvement was increased linearly with the surface area of SiO2. The number of surface hydroxyl group in unit volume of SiO2 particle increased with increasing the specific surface area of SiO2, and the interaction between hydroxide group of SiO2 and carbonyl group of PMMA had an important role to improve the thermal stability of PMMA.  相似文献   

9.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

10.
In order to investigate the systematic changes in fragmentation behavior of poly(methyl methacrylate) (PMMA) with increasing molecular weight, alkali-metal cationized PMMA 20-mer, 60-mer and 100-mer were selected for post-source decay (PSD) fragmentation study by matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. PMMA polymers were cationized with lithium, potassium and cesium cations to explore the influence of the cation size on the fragmentation behavior of the polymers. All PMMA polymers could be fragmented by MALDI-PSD and fragmentation of the MALDI ionized synthetic polymer of molecular weight 10 kDa is reported here for the first time. It was shown that an increasing molecular weight of the PMMA chain required an increase in the size of the cation to improve the intensity and the number of the fragments in the PSD spectrum. Some instrumental parameters had to be optimized prior to a successful PSD analysis of the largest PMMA polymers.  相似文献   

11.
PMMA/nano-SiO2纳米复合材料的制备和表征   总被引:17,自引:0,他引:17  
PMMA/nano-SiO2纳米复合材料的制备和表征;二氧化硅;聚甲基丙烯酸甲酯;溶液聚合  相似文献   

12.
通过三异丙氧基钕直接掺入MMA单体 ,迅速形成凝胶后进行原位聚合的方法制得三异丙氧基钕 /PMMA杂化材料 ,采用IR、TG、WAXD、DMTA、SEM等手段对其进行表征 .结果表明 ,三异丙氧基钕与MMA中的羰基因配位并导致交联形成了交联网状结构的杂化材料 .与PMMA相比 ,这种杂化材料具有优良的耐热性、耐溶剂性 ,高贮能模量 ,同时 ,该制备方法克服了稀土离子易缔合的缺点 ,获得了高稀土含量且均匀分布的三异丙氧基钕 /PMMA杂化材料  相似文献   

13.
Thermal behaviors of POTMDM-net-PMMA and POTMG/PMMA blends were studied by DDSC. Tg of the polymer network was lowered by increasing the POTMDM in feed for copolymerization of POTMDM and MMA. A crystallization peak was observed only when MMA in feed was less than 30%. Tg of POTMG/PMMA was also lowered by decreasing the content of PMMA, however, the change was observed only when PMMA content was more than 70%. These results suggest that thermal transitions of the polymer network are restricted by the mesh size. POTM chains of the polymer network effectively play as a plasticiser. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Knappe  W.  Yamamoto  O. 《Colloid and polymer science》1970,240(1-2):775-783
Summary The thermal conductivity of the following polymers was measured in the temperature range from –170 to 140 °C: Two crosslinked polymers (irradiated PE and PMMA crosslinked with TAC) and two degradated polymers (heat-treated AN-MMA-copolymer and irradiated PMMA).In the temperature range fromT g toT m , the thermal conductivity of irradiated PE decreases with increasing temperature and with increasing dose up to 600 MRD. The observed decrease of the thermal conductivity is attributed to a decrease of crystallinity due to irradiation. At temperatures aboveT m , the thermal conductivity increases with the radiation dose. This results from radiation induced crosslinking.For crosslinked PMMA, the thermal conductivity increases with increasing concentration of TAC.The thermal conductivity of heat-treated AN-MMA-copolymer seems to decrease with heating time. This is caused by a shift of the flat break atT g to higher temperatures.For irradiated PMMA, the thermal conductivity decreases slightly with radiation doses greater than 100 MRD.
Zusammenfassung Die Wärmeleitfähigkeit folgender Polymeren wurde im Temperaturbereich von –175 bis 140 °C gemessen: Zwei vernetzte Polymere (bestrahltes PÄ und mit TAC vernetztes PMMA) und zwei abgebaute Polymere (AN-MMA-Copolymer mit thermischer Vorbehandlung und bestrahltes PMMA).Im Temperaturbereich vonT g bisT m nimmt die Wärmeleitfähigkeit des bestrahlten PÄ mit wachsender Temperatur und mit zunehmender Bestrahlungsdosis bis 600 MRD ab. Dieser Abfall der Wärmeleitfähigkeit wird auf die Abnahme der Kristallinität infolge Bestrahlung zurückgeführt. Bei Temperaturen, oberhalbT m steigt die Wärmeleitfähigkeit mit zunehmender Bestrahlungsdosis. Das ist auf die strahlungsinduzierte Vernetzung zurückzuführen.Bei vernetztem PMMA findet man mit zunehmender Konzentration von TAC eine Erhöhung der Wärmeleitfähigkeit und eine Verschiebung des flachen Knickes beiT g nach höheren Temperaturen hin.Die Wärmeleitfähigkeit von AN-MMA-Copolymeren scheint mit zunehmender Temperzeit zu fallen. Das wird durch eine Verschiebung des flachen Knickes nach höheren Temperaturen verursacht.Bei bestrahltem PMMA zeigt die Wärmeleitfähigkeit einen kleinen Abfall mit Bestrahlungsdosen größer als 100 MRD.


With 8 figures and 3 tables

To Professor Dr.K.-H. Hellwege on his sixtieth birthday  相似文献   

15.
PMMA/PVDF composite membranes were prepared by isothermal immersion-precipitation of dope solutions consisting of PMMA, PVDF, and DMSO into both harsh and soft nonsolvent baths. The effects of PMMA and DMSO contents on the membrane morphology, crystal structure, thermal behavior and tensile strength of the formed membrane were investigated. For a PMMA-free casting dope immersed in a harsh bath, such as pure water, the formed membrane exhibited a typical asymmetric morphology characterized by skin, finger-like macrovoids, and cellular pores. In contrast, when a soft 70% DMSO bath was adopted, PVDF crystallized to form a membrane packed by spherulitic globules. Incorporation of PMMA gave rise to interesting morphological features; e.g., PVDF globules were observed to adhere to the interlocked polymer branches coexisting with the continuous porous channels, as revealed by high resolution FESEM imaging. XPS analysis of the surfaces of the composite membranes suggested the occurrence of a surface segregation phenomenon, wherein PVDF preferentially migrated to the top surface region of the membrane such as to minimize the interfacial energy. XRD analyses indicated that PVDF crystallized into ‘α’ structure in both PVDF and PMMA/PVDF composite membranes. The crystallinity of the membranes was found to decrease with increasing PMMA content, which was confirmed by DSC thermal analyses. The latter results also indicated a significant decrease in membrane’s melting temperature as the PMMA content was increased. Tensile strengths of the membranes were improved by inclusion of PMMA in either harsh or soft baths. However, elongation at break showed a reversed trend.  相似文献   

16.
The thermal and dynamic-mechanical characteristics of three PTFE/PMMA nanoparticle samples are described. The shell forming PMMA, once isolated from the PTFE cores, exhibits a lower thermal stability than the PMMA component in the corresponding nanocomposite under both thermal and oxidative degradation conditions thus indicating a definite, though moderate, thermal reinforcement due to the morphology of the nanocomposites. An increase in the thermal stability under nitrogen atmosphere was observed as the PTFE amount increases. However under air, no difference is observed in the various systems. These observations suggest that only a physical shield can be exerted by the PTFE cores to the PMMA matrix possibly due to a weak interface between PTFE and the PMMA. This hypothesis is also substantiated by the DMA analysis.  相似文献   

17.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide(ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate)(PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH(3 wt%?7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), rheological analysis, differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature(Tg) of around 3 K. The activation energy(Ea), reaction orders(n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

18.
The electronic spectra of carbazone in a number of organic solvents of different properties have been examined. It is deduced that in dilute solutions of basic solvents, carbazone (H2L) exists in acid—base equilibrium (H2L ⇋ HL + H+). The proportional concentration of the base form (HL) in a medium is largely dependent on the carbazone concentration, basicity of the organic solvent and the tendency of stabilization of the HL form through H-bond interaction with protic solvent molecules. The observed absorption bands belonging to absorption of both H2L and HL forms are assigned to a transition involving the whole solute associated with intramolecular CT transition. The longer wavelength band appearing in the spectra of the H2L form in the weak basic solvents (acetonitrile, acetone, dioxane and CCl4) is suggested to be due to absorption of the solvated polar complex resulting from interaction of solvent polarity with the polar solute carbonyl group.  相似文献   

19.
Films of poly (methyl methacrylate) (PMMA) were prepared by the addition of photoinitiator to the polymer. The influence of five organic photoinitiators on thermal stability of poly(methyl methacrylate) was studied by thermogravimetric analysis. Next, the PMMA films doped with these photoinitiators were UV irradiated and investigated in terms of changes in their thermal stability. It was found that the photoinitiators had accelerated thermal degradation of non-irradiated PMMA films due to the action of free radicals coming from the additives’ thermolysis. For UV-irradiated specimens, the effect of photoinitiator on PMMA thermal stability depended on the chemical structure of organic compound modifying the polymer. In general, thermal stability of irradiated samples was higher in the presence of additives. Thermal destruction of modified PMMA can be explained by the formation of resonance structures in aromatic photoinitiators and consumption of energy in dissipation processes.  相似文献   

20.
The reactions of diphenylcarbazone or diphenylcarbazide with mercury(I) or mercury(II) are studied by qualitative analysis, extraction and Job's method. Only carbazone complexes are formed. Mercury(I) and (II) both form two complexes, a 1:1 and a 1:2 complex (cation : carbazone). The complexes formed are colloids in aqueous alcoholic solutions. Decomposition of these complexes, to form diphenylcarbodiazone, is accelerated by ultraviolet and visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号