首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In order to analyze thermal safety of fireworks and crackers, thermal explosion models of three kinds of sphere fireworks and crackers with different structures are achieved on the basis of thermal explosion theory, and thermal resistance of shell and effective Biot number are deduced as for boundary conditions. Two models are calculated with target-shooting method in Matlab program, and the rationality is proved through comparison of numerical solution and classical solution. Meanwhile, calculation steps are shown about a type of firework. The study has a great significance to thermal safety analysis of fireworks and crackers.  相似文献   

2.
To study the influence of temperature on cylindrical fireworks and crackers in production and storage, this article establishes a physical and mathematical model of thermal explosion critical ambient temperature of finite cylindrical fireworks with shell based on two-dimensional steady state thermal explosion theory. The numerical program is written by difference method and Newton-homotopy method. The partial differential equations of thermal explosion model are calculated in Matlab. Comparison of numerical solutions and classical solutions proves the accuracy of model. The influence of Biot number of each surface and length diameter ratio on critical ambient temperature is analyzed. It is founded that the scope of length diameter ratio is $ 0.08 < H < 4.3 $ when Biot number tends to infinite. The thermal safety temperature of the fireworks without inner barrel when it is stored individually is obtained. This provides theoretical support for the safety of fireworks and crackers in production, storage transportation, and setting off process.  相似文献   

3.
The flash powder composition is used in the fireworks industry to manufacture the firecrackers which consist of potassium nitrate, aluminium and sulphur in 75 μm range. This study focuses on the synthesis of nano and micro flash powders with different trials of composition. The particle sizes of the nanochemicals are 142.8, 93.10 and 91.28 nm for KNO3, Al and S, respectively. The nano flash powder is mixed with micron flash powder in different ratios to manufacture the crackers and thus the noise level for the crackers are found. Thermal analysis was conducted in differential thermal and thermo gravimetric analyser. Also, impact sensitivity and friction sensitivity of the nano flash powder are analysed. The nano flash powder shows low ignition temperature compared to micron and also has high mechanical sensitivity. Fire crackers which contains one gram of 100 % nano flash powder emits the threshold noise level of 125 dB(AI) in spite of 4 g of 10 % nano flash powder for the same composition.  相似文献   

4.
The problem of thermal explosion arising from a spatially homogeneous reduced five steps reaction kinetic model, which comprises of the chain initiation, chain propagation/branching and chain termination steps is considered. By assuming realistic approximations, the pertubation technique was used to obtain expressions for thermal ignition time for the adiabatic system. In the non-adiabatic system, expressions for the critical heat loss parameter and the ignition temperature in the line of Semenov theory have been obtained. Analysis of the system involving some parameters, and the contributions of the heat released due to the termination reactions on the behaviour of the ignition times and Semenov parameters have been carried out and expressed graphically. Apart from confirming known results in literature, the results shed more light on hitherto unknown behaviour.  相似文献   

5.
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.  相似文献   

6.
以5%HNO3处理烟花爆竹内药物样品,以ICP-AES法测定样品中K、Na、P、Mg、Ba、Cu、B、Sr、Sb、Ga、Ge、Al、Ti、Mn、Pb、As 16种元素。比较了不同酸、不同浓度时样品的处理方法,5%HNO3为最佳样品处理条件。对4个不同厂家产品进行了测定和加标回收研究,测定结果的相对标准差小于5%(n=5),各元素的回收率在93.4%~114.3%之间。  相似文献   

7.

Majority of previous solid ignition models, including numerical and analytical ones, considered only surface absorption of incident heat flux for simplification. However, the influence of in-depth absorption on pyrolysis and subsequent ignition cannot be ignored for infrared translucent polymers. This work addresses this problem and focuses on time-dependent heat flux to establish an analytical model for ignition behaviors prediction by means of theoretical analysis. Ignition temperature was utilized as the ignition criterion, and both surface and in-depth absorption scenarios were considered. Thermally thick polymethyl methacrylate and polyamide 6 were selected as reference materials to verify the reliability and applicability of the proposed model by comparing the analysis results with experimental data as well as numerical simulations. A method for determining the approximation parameters of the theoretical analysis was presented to derive the relationship between ignition time and the coefficients in heat flux expressions. The results show that the higher surface temperature owing to surface absorption accelerates the pyrolysis rate and results in a shorter ignition time, while in-depth absorption affects the ignition time inversely. The effect of surface heat loss was also evaluated quantitatively through both analytical and numerical models. The uncertainty of the proposed model is mainly caused by the selection of the approximation parameters. Nevertheless, it provides an alternative approach to estimate the ignition time of translucent polymers besides numerical simulation.

  相似文献   

8.
The thermal decomposition of an explosive material is accompanied by generation of a certain amount of heat and, under certain conditions, can lead to the well-known phenomena of self-ignition. Therefore, it is of great importance to predict whether or not an explosive material will ignite under given conditions (specimen mass and shape, surrounding temperature, etc.). An own computer program named THERMEX, for studying thermal ignition phenomena, is discussed in this paper. The program uses the finite difference method to describe the reactive heat conduction phenomena in infinite slab, cylindrical, and spherical geometry of explosive materials. The analysis of the stability requirements of the finite difference method applied in the program is carried out. The program is tested by the comparison of calculated results with the results of calculation by other authors. Reasonable agreement was found under identical computational conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Effective thermal conductivity of fireworks raw materials and their mixture have been measured by the temperature modulated DSC and the hot wire method, in order to predict spontaneous ignition properties precisely. As a result, an excellent linear correlation has been obtained between the density and the λe by the TMDSC method. Moreover, the low-density data by the hot wire method lie on the extrapolated point of the linear correlation. Thus, the λe within the ordinary limit of fireworks composition can be measured by the TMDSC method. Krupiczka’s estimation method shows a good agreement with the experimental values.  相似文献   

10.
A sensitivity analysis to assumptions and input variables is carried out for a predictive model previously developed [1] for the fire response of a glass-fibre/polyester panel and a glass-fibre/polyester-Vermiculux sandwich. It is an unsteady, one-dimensional model using the porous medium approximation and a constant gas pressure with two-step, finite rate kinetics for the thermal decomposition and combustion of the polymeric resin, moisture evaporation described by an Arrhenius rate law, heat and mass transfer by convection, heat conduction and radiation described by effective thermal conductivities, variation of the volumetric fractions of the polymeric resin and the moisture with the conversion degree, effective specific heats, external heat transfer resistances and surface ablation. The strongest impact on the model predictions is exerted by the imposed external heat flux with variations on the characteristic process times between 49 and 774%. An important role in sample heating/conversion is also played by surface ablation and/or external heat transfer resistance with variations up to 30-72% or, when ablation is disregarded, with temperatures along the core layer well below those of the degrading skin. These are also significantly affected by surface heat losses, with the assumption of adiabatic bottom surface leading to heterogeneous ignition of the lower skin, and evaporation of moisture with variations in the characteristic times up to 35%. The model for the effective thermal conductivity of the fibre-reinforced skin (the Parallel, the Maxwell-Eucken and the Effective Medium Theory models versus the Series model) is also important resulting in characteristic time variations up to 35%. The absence of local thermal equilibrium between the condensed and the gas/vapour phase and the kinetic details of the polymer reactions are comparatively less important (maximum diminution in the characteristic times of 16%). Moreover, although over-pressures, modelled by the Darcy law, become quite high especially during the moisture evaporation stage (up to ten times the atmospheric value), their effects on the thermal response of the structure are completely negligible when structural changes are not modelled. Finally, a sensitivity analysis is also carried out to input parameters.  相似文献   

11.
There have been performed experimental measurements of effective thermal conductivity of silica-gel for a stagnant cylindrical fixed bed under transient and steady state conditions in the presence of dry air at different pressures and for different amounts of adsorbed water. The Bauer-Schlünder and Kunii-Smith models have been used to identify the thermal solid conductivity of silica gel pellets from measurements of the conductivity in an adsorbent bed. Sorption rates of water vapor in silica gel were measured using a single-step thermal method by monitoring the sample surface temperature by infrared detection. In order to obtain the mass diffusivity it is necessary to match the numerical solution of the mathematical model to the experimental data.  相似文献   

12.
In this article, a special phenomenon of secondary ignition, which is caused when a gasoline–air mixture comes in contact with a local heat source after the first explosion or fire in a confined tunnel, is studied through experiments carried out in a cylinder tunnel with a solid heating device. Based on the analysis of the experimental results of secondary thermal ignition in the confined tunnel, the mode, critical ignition temperature, and critical concentration of the secondary thermal ignition’s occurrence of the gasoline–air mixture in the confined tunnel are discussed. The results indicate that the mode of secondary thermal ignition of gasoline–air mixture in the confined tunnel includes burning, slow deflagration, and rapid deflagration. Compared to the first thermal ignition, the burning intensity of the secondary thermal ignition is stronger and the ignition delay is much shorter. The relationship between critical ignition temperature and gas mixture temperature follows a cubic polynomial. Experiments also indicate that whether the secondary thermal ignition occur or not is determined by critical gasoline vapor and oxygen concentration even if the temperature is maintained in a reasonable scope. When the concentration of the gas vapor is as low as 0.45 % and the oxygen as low as 10.4 %, the secondary thermal ignition still can be triggered.  相似文献   

13.

Two-scale tests, microscale and bench scale, are conducted to analyze the flammability of a flexible polyurethane foam. Microscale tests include simultaneous thermal analysis coupled to Fourier transform infrared spectroscopy, and microscale combustion calorimeter (MCC). Evolved gas components, heat release rate per unit mass, total heat release, derived heat release capacity, and minimum ignition temperature are obtained. Bench scale tests are performed on cone calorimeter. Peak heat release rate per unit area, effective heat of combustion, minimum incident heat flux for ignition, and total heat release per unit area of different incident heat fluxes are obtained. FO-category of the PU foam is estimated by multiple discriminant function analysis based on the results of cone calorimeter test. The relationship between the two-scale tests is analyzed. The minimum ignition temperatures derived from multi heating rate MCC tests are used to predict the time to ignition and compared with the results from cone calorimeter tests. This PU foam is evaluated as a high fire hazard polymer having low heat release capacity, low ignition temperature, and short ignition time.

  相似文献   

14.
The objective of this article is to generate thermal decomposition data on fireworks tip mixture, a mixture used to coat the tip of fireworks, for easy ignition. This mixture has reportedly involved in triggering many accidents in fireworks industry. Different quantities of water were added to the mixture and its thermal characteristics were studied. Differential scanning calorimeter was used for screening tests and accelerating rate calorimeter was used for detailed studies in adiabatic and isothermal modes. The self-heat rate data obtained showed onset temperature for different quantity of water, at a range of 80–170 °C. The mixture with 40 % water wt/wt had onset at 80 °C in adiabatic mode. The same mixture on isoaging at 40 °C exhibited exothermic characteristics with a substantial rise in system pressure (57 bar). The heats of exothermic decomposition and Arrhenius kinetics were also computed.  相似文献   

15.
To monitor and improve the performance of nuclear fuel assemblies, the uptake of gases (oxygen, nitrogen and hydrogen) is determined in zircaloy cladding materials. Gas chromatography and/or mass spectrometry combined with hot vacuum fusion were applied. Deviations from the initial concentrations (ca. 5 μg g?1 H2, 30 μg g?1 N2 and 1200 μg g?1 O2) in the “as fabricated” condition, are important in estimating cladding corrosion. The material characteristics of zircaloy are altered substantially by the neutron irradiation and the chemical environment in the reactor coolant, thus the irradiated material must also be studied. For reprocessing safety consideration, the ignition and explosion parameters of unirradiated and irradiated zircaloy dusts were examined. Standard methods, tailored to hot-cell operation, were used to evaluate the minimum ignition temperature of a dust layer on a heated surface at constant temperature, the ignition temperature of a dust cloud, the auto-ignition temperature of a cylindrical dust formation as a function of sample volume, and the explosion pressure and pressure rise in a 20-l spherical chamber. Samples of fines (<100 μm diameter) were characterized by measuring their density and particle-size distribution, and by scanning electron microscopy. For samples of irradiated zircaloy, the ignition temperatures were lower and the explosion pressures and pressure rises higher than for unirradiated zircaloy. These findings can be explained by the different particle-size distribution of irradiated material samples. The increased brittleness of the irradiated material produces more small particles (<20 μm) which favour ignition and explosion.  相似文献   

16.
The ignition of combustible materials is an important aspect of the processes taking place in an unwanted fire. In this work, an experimental and theoretical study of the ignition process of wood has been carried out. Experiments of both spontaneous and piloted ignition have been performed. Constant and decreasing variable heat fluxes have been tested. A mathematical model has been used to predict the time to ignition of wood for the different operating conditions used. The solution of the model provides the temperature at each point of the solid, the local solid conversion and the time to ignition of the material. In general, a good agreement between experimental and theoretical results is obtained.  相似文献   

17.
Sun  Hao  Pan  Yong  Guan  Jin  Jiang  Yanting  Yao  Jun  Jiang  Juncheng  Wang  Qingsheng 《Journal of Thermal Analysis and Calorimetry》2019,135(4):2359-2366

With the development of nano-powder technology, polymeric nano-materials are widely used in various industries, while not much research on their thermal decomposition and dust explosion characteristics has been conducted. The thermal behaviors and explosion characteristic parameters of the nano-polystyrene (nano-PS) with a typical particle size of 90 nm were studied by employing thermogravimetric analysis (TG), MIE-D 1.2 minimum ignition energy (MIE) test device, and 20-L spherical dust explosion test equipment. The results showed that the thermal decomposition of the nano-PS occurred in a two-step process which was different from the single process for conventional PS. Meanwhile, the reaction rate of the thermal decomposition for nano-PS increased with the heating rate. The TG and DTG curves shifted to the higher-temperature zone when the heating rate increased, and the initial temperature, final temperature, temperature at the maximum rate, and the maximum rate also increased. The sensitivity parameter of the minimum ignition energy of nano-PS varied as the dust concentration altered, and the most sensitive explosive concentration was about 200 g m−3. Also, nano-PS was proved to be quite sensitive to the electrostatic spark, as its calculated MIE value was as low as 11 mJ. For the severity parameters, the explosion pressure and its rising rate of nano-PS tended to increase at first and then decrease with the increase in dust concentrations. According to the risk classification standard, the explosion risk class of nano-PS was St2. The results were further extensively compared to other previous works. The results demonstrated both the higher explosion possibility and severity of nano-PS. This study could provide guidance for the safety management of nano-PS in its manufacture, storage, and handling process.

  相似文献   

18.
X.Q. Fang  C. Hu 《Thermochimica Acta》2007,453(2):128-135
In this study, the multiple scattering of thermal waves and temperature distribution resulting from a subsurface sphere in a semi-infinite exponentially graded material are investigated, and the analytical expression of the temperature at the surface of the graded material is obtained. Non-Fourier heat conduction equation is applied to solve the temperature at the surface, and the image method is used to satisfy the semi-infinite boundary condition of graded material. The thermal wave fields are expressed using wave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary condition of the sphere. According to the wave equation of heat conduction, a general solution of scattered thermal waves is presented for the first time. The temperature distribution and phase difference at the surface of the semi-infinite material with different parameters are graphically presented. Analyses show that the hyperbolic heat conduction equation cannot be regarded as a continuation of the parabolic heat conduction equation at very short time scale. The effects of the incident wave number, the structural and physical parameters on the distribution of temperature and phase difference in the semi-infinite material are also examined.  相似文献   

19.
1-amino-1-ethylamino-2,2-dinitroethylene (AEFOX-7) was synthesized by the reaction of 1,1-diamino-2,2-dinitroethylene (FOX-7) and ethylamine aqueous solution at 92 oC. The the-oretical investigation on AEFOX-7 was carried out by B3LYP/6-311++G**method. The IR frequencies and NMR chemical shifts were performed and compared with the experi-mental results. The thermal behavior of AEFOX-7 was studied with differential scanning calorimetry and thermal gravity-derivative thermogravimetry methods, and can be divided into a melting process and an exothermic decomposition process. The enthalpy, apparent activation energy and pre-exponential factor of the exothermic decomposition reaction were obtained as 374.88 kJ/mol, 169.7 kJ/mol, and 1019.24 s-1, respectively. The critical temper-ature of thermal explosion of AEFOX-7 is 145.2 oC. The specific heat capacity of AEFOX-7 was determined with micro-DSC method and theoretical calculation method, and the molar heat capacity is 214.50 J/(mol K) at 298.15 K. The adiabatic time-to-explosion of AEFOX-7 was calculated to be a certain value between 1.38-1.40 s. The thermal stability of AEFOX-7 is much lower than that of FOX-7.  相似文献   

20.

In the present study, the exact solution of a nanofluid flow and mixed convection within a vertical cylindrical annulus with suction/injection, which is adjacent to the radial magnetic field, is presented with regard to the motion of cylinders’ walls. The impact of Brownian motion and shape factor on the thermal state of CuO–water nanofluid is also considered. The influence of such parameters as Hartmann number, mixed convection parameter, suction/injection, volume fraction of nanoparticles and motion of cylinders’ walls on flow and heat transfer is probed. The results show that the shape of the nanoparticles could change the thermal behavior of the nanofluid and when the nanoparticles are used in the shape of a platelet, the highest Nusselt number is obtained (about 2.5% increasement of Nusselt number on internal cylinders’ wall comparison to spherical shape). The results shed light on the fact that if, for example, the external cylinder is stationary and the internal cylinder moves in the direction of z axis, the maximum and minimum heat transfer take place on the walls of internal and external cylinders, respectively (for η?=?300, about 15% increasement of Nusselt number on internal cylinders’ wall). Furthermore, the enhancement of radius ratio between two cylinders increases the rate of heat transfer and decreases the shear stress on the internal cylinder’s wall.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号