首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of cure reaction of DGEBA using a chelate of Ni(II) with diethylenetriamine (dien), Ni(dien)2I2, as a curing agent was studied by DSC. TG curve of the complex curing agent showed mass loss in two region of temperature: 200–320 and 450–550 °C. Dynamic DSC measurements showed only one exothermic peak with a maximum about 250 °C depending on the heating rate. According to the methods of KAS and Ozawa–Flynn–Wall the values of E a were 92.5 and 96.2 kJ/mol, respectively. The isoconversional kinetic analysis in whole range of conversion, α = 0.02–0.95, showed small changes in the E a values in the region of α = 0.04–0.6 and most likely represent some average values (E a = 110 kJ/mol) between the values of E a of non-autocatalyzed and autocatalyzed reactions. Using the sole dependence of E a on α, the time required to reach fully cured materials under isothermal conditions were also predicted and compared with the experimental results.  相似文献   

2.
The copper(II) oxalate was synthesized, characterized using FT-IR and scanning electron microscopy and its non-isothermal decomposition was studied by differential scanning calorimetric at different heating rates. The kinetics of the thermal decomposition was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values obtained from isoconversional methods of FWO and Bosewell are 0.9 and 3.0 %, respectively, higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All but the Bosewell maximum rate (peak) methods yielded consistent values of E α (~137 kJ mol?1); however, the complexity of the thermal decomposition reaction can be identified only through isoconversional methods.  相似文献   

3.
The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.  相似文献   

4.
Effects of high nano-SiO2 loading (up to 30 mass%) on polybenzoxazine (PBA-a) thermal degradation kinetics have been investigated using nonisothermal thermogravimetric analysis (TG). The DTG curves revealed three stages of thermal decomposition process in the neat PBA-a, while the first peak at low temperature was absent in its nanocomposites. As a consequence, the maximum degradation temperature of the nanocomposites shifted significantly to higher temperature as a function of the nano-SiO2 contents. Moreover, the degradation rate for every degradation stage was found to decrease with the increasing amount of the nano-SiO2. From the kinetics analysis, dependence of activation energy (E a) of the nanocomposites on conversion (α) suggests a complex reaction with the participation of at least two different mechanisms. From Coats–Redfern and integral master plot methods, the average E a and pre-exponential factor (A) of the nanocomposites showed systematically higher value than that of the PBA-a, likely from the shielding effect of the nanoparticles. The main degradation mechanism of the PBA-a was determined to be a random nucleation type with one nucleus on the individual particle (F1 model), while that of the PBA-a nanocomposite was the best described by diffusion-controlled reaction (D3 model).  相似文献   

5.
Single crystals of melaminium perchlorate monohydrate (MPM) have been grown from aqueous solution by slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms the title crystal crystallizes in the triclinic (P-1) structure and the calculated lattice parameters are a = 5.6275 ± 0.0780 Å, b = 7.6926 ± 0.1025 Å, c = 12.0878 ± 0.2756 Å, α = 103.89 ± 1.01°, β = 94.61 ± 0.92°, γ = 110.22 ± 0.81°, and V = 468.95 Å3. The thermal decomposition behavior of MPM has been studied by means of thermogravimetric analysis at three different heating rates 5, 10, and 20 °C min?1. The values of effective activation energy (E a), pre-exponential factor (ln A) of each stage of thermal decomposition for all heating rates were calculated by model free method: Kissinger, Kim–Park, and Flynn–Wall method. A significant variation of effective activation energy (E a) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and E a values was established (compensation effect). Dielectric study has also been carried out and it is found that both dielectric constant (ε′) and dielectric loss (ε″) decreases with increase in frequency.  相似文献   

6.
Non-isothermal kinetics of the thermal degradation of poly(vinyl chloride) (PVC) prepared by a living radical polymerization (LRP) method was performed and compared with the results obtained from PVC prepared by the conventional free-radical process (FRP). Both differential and integral isoconversional methods were applied for determining the apparent activation energy of the dehydrochlorination stage. This study made clear noticeable differences in the thermal degradation of the PVC samples under analysis. The newly synthesized LRP-PVC material has a better thermal stability and presents substantial differences in the macroscopic kinetics of the dehydrochlorination process compared with conventional FRP-PVC. These differences were assessed in quantitative terms on the basis of the kinetic triplet [Ea,A,f(α)].  相似文献   

7.
The kinetics of the thermal degradation of Japanese lacquer (urushi) films in N2 and in air were studied by means of thermogravimetry (TG). Thermogravimetric and derivative thermogravimetric curves indicated that the degradation occurred in three stages. The atmosphere influenced the apparent activation energies (E a) of the three degradation stages. The activation energies (E a) for the first stage in N2 and air, obtained from the TG curve, were 19.12 and 10.19 kcal mol?1, respectively, and the corresponding pre-exponential factors (A) were 6.18 × 105 and 1.24 × 102 min?1 for 1-year-old urushi films.  相似文献   

8.

The mechanism and kinetics of thermal degradation of materials developed from cellulose fiber and synergetic fire retardant or expandable graphite have been investigated using thermogravimetric analysis. The model-free methods such as Kissinger–Akahira–Sunose (KAS), Friedman, and Flynn–Wall–Ozawa (FWO) were applied to measure apparent activation energy (Eα). The increased Eα indicated a greater thermal stability because of the formation of a thermally stable char, and the decreased Eα after the increasing region related to the catalytic reaction of the fire retardants, which revealed that the pyrolysis of fire retardant-containing cellulosic materials through more complex and multi-step kinetics. The Friedman method can be considered as the best method to evaluate the Eα of fire-retarded cellulose thermal insulation compared with the KAS and FWO methods. A master-plots method such as the Criado method was used to determine the possible degradation mechanisms. The degradation of cellulose thermal insulation without a fire retardant is governed by a D3 diffusion process when the conversion value is below 0.6, but the materials containing synergetic fire retardant and expandable graphite fire retardant may have a complicated reaction mechanism that fits several proposed theoretical models in different conversion ranges. Gases released during the thermal degradation were identified by pyrolysis–gas chromatography/mass spectrometry. Fire retardants could catalyze the dehydration of cellulosic thermal insulating materials at a lower temperature and facilitate the generation of furfural and levoglucosenone, thus promoting the formation of char. These results provide useful information to understand the pyrolysis and fire retardancy mechanism of fire-retarded cellulose thermal insulation.

  相似文献   

9.
Raw material kaolin Sedlec Imperial and four types of rehydroxylated samples were used to study the processes of the first and second dehydroxylation of kaolinite by thermal analysis and IR spectroscopy. Activation energy (E a) of these processes was calculated from DSC curves using five isoconversional methods. IR spectroscopy was used to compare structures of the original and rehydroxylated samples. It was proven that the structure of rehydroxylated metakaolinite can closely resemble that of the raw kaolinite under intensive hydrothermal treatment but does not reach the original structure. The E a values of the second dehydroxylation reach 87–92 % of E a values of the first dehydroxylation.  相似文献   

10.
Single crystals of melaminium bis (hydrogen oxalate) (MOX) single crystals have been grown from aqueous solution by slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MOX crystallises in monoclinic system with space group C2/c. The calculated lattice parameters are a = 20.075 ± 0.123 Å b = 8.477 ± 0.045 Å, c = 6.983 ± 0.015 Å, α = 90°, β = 102.6 ± 0.33°, γ = 90° and V = 1,159.73 (Å)3. Thermogravimetric analysis at three different heating rates 10, 15 and 20 °C min?1 has been done to study the thermal decomposition behaviour of the crystal. Non-isothermal studies on MOX reveal that the decomposition occurs in two stages. Kinetic parameters [effective activation energy (E a), pre-exponential factor (ln A)] of each stage were calculated by model-free method: Kissinger, Kim–Park and Flynn–Wall method and the results are discussed. A significant variation in effective activation energy (E a) with conversion progress (α) indicates that the process is kinetically complex. The linear relationship between the ln A and E a was established (compensation effect). DTA analyses were conducted at different heating rates and the activation energy was determined graphically from Kissinger and Ozawa equation. The average effective activation energy is calculated as 276 kJ mol?1 for the crystallization peak. The Avrami exponent for the crystallization peak temperature determined by Augis and Bennett method is found to be 1.95. This result indicates that the surface crystallization dominates overall crystallization. Dielectric study has also been done, and it is found that both dielectric constant and dielectric loss decreases with increase in frequency and is almost a constant at high frequency region.  相似文献   

11.
A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol?1, 9.4 s?1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.  相似文献   

12.
The kinetics of thermal decomposition of NH4CuPO4·H2O was studied using isoconversional calculation procedure. The iterative isoconversional procedure was applied to estimate the apparent activation energy E a; the values of apparent activation energies associated with the first stage (dehydration), the second stage (deamination), and the third stage(condensation) for the thermal decomposition of NH4CuPO4·H2O were determined to be 117.7 ± 7.7, 167.9 ± 8.4, and 217.6 ± 45.5 kJ mol?1, respectively, which demonstrate that the third stage is a kinetically complex process, and the first and second stages are single-step kinetic processes and can be described by a unique kinetic triplet [E a, A, g(α)]. A new modified method of the multiple rate iso-temperature was used to define the most probable mechanism g(α) of the two stages; and reliability of the used method for the determination of the kinetic mechanism were tested by the comparison between experimental plot and model results for every heating rate. The results show that the mechanism functions of the two stages are reliable. The pre-exponential factor A of the two stages was obtained on the basis of E a and g(α). Besides, the thermodynamic parameters (ΔS , ΔH , and ΔG ) of the two stages were also calculated.  相似文献   

13.
The Elephant Grass (Pennisetum purpureum Schum) was pretreated by two independent processes, through washing with hot water (W-EG) and acid solution (AW-EG) to improve its energy properties to apply it in a thermochemical process conversion into fuel. The biomasses were analyzed by proximate and ultimate analysis; and the pyrolysis kinetics, before and after pretreatments, were evaluated by the apparent activation energy (E a) for decomposition in the temperature range of greater volatile matter through the Model-free kinetics using thermogravimetric analysis data. The kinetics of the microcrystalline cellulose Avicel PH-101 was performed to evaluate the E a result of pure cellulose. The pretreatments were efficient in increasing the volatile matter and heating value, decreasing moisture and ash content, and improving its energetic power to the application in fast pyrolysis process for bio-oil production. The TG results have shown that the reduction in ash content facilitates the pyrolysis process, increasing the volatile matter and decreasing the apparent activation energy required to biomasses degradation, due to less diffusional resistances to heat and mass transfer of W-EG and AW-EG. The Avicel PH-101 showed the highest value of apparent activated energy (E a = 276.2 kJ mol?1) which could be explained by its crystallinity, suggesting that crystalline cellulose regions are less accessible to heat diffusion than amorphous regions, requiring more energy to its degradation.  相似文献   

14.
New semi-organic bis(thiourea)silver(I)nitrate (TuAgN) single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with the non-centrosymmetric space group C2221 and the calculated cell parameters are a = 33.3455 (6) Å, b = 45.2957 (7) Å, c = 20.3209 (5) Å, α = β = γ = 90°, and V = 30692.8 (10) Å 3. The thermal stability and decomposition behavior of TuAgN compound have been studied by thermogravimetric analysis at three different heating rates 5, 10, and 15 °C min?1. The effective activation energy (E a) and pre-exponential factor (ln A) of thermal decomposition of thiourea from TuAgN compound at three different heating rates are estimated by model free methods: Arrhenius, Flynn–Wall, Kissinger, and Kim–Park. The calculated effective activation energies were found to vary with the fraction (α) reacted. The compensation effect between the (ln A) and (E a) has also been studied. Dielectric properties of TuAgN crystal have been studied in a wide range of frequencies and temperatures. AC conductivity has also been carried out.  相似文献   

15.
Thermal degradation kinetics of MWNT-reinforced EMA-based nanocomposites having different methyl acrylate (MA) contents (by % mass) ranging from 9 to 30% have been monitored. Kissinger and Flynn?CWall?COzawa methods for evaluating non-isothermal degradation of polymers have been examined. Overall, the thermal stabilities of the nanocomposites are the function of amount of MWNTs loading and their state of dispersion that depends on the MA content of respective EMAs. Composite samples exhibit higher activation energy (E a) than the neat EMAs but the E as of the composites diminish with increased MA contents of the matrices. TG-Mass spectrometry has been used to identify the volatile products resulting from thermal degradation of composites, and a promising mechanism has been proposed over different range of temperatures of degradation. It is proposed that the side-group scission of methoxycarbonyl group initiates thermal decomposition following combination of chain end and random chain scission reactions, ensuing pseudo second-order kinetics.  相似文献   

16.
The non-isothermal method for estimating the kinetic parameters of crystallization for the phase change memory (PCM) materials was discussed. This method was applied to the perspective PCM material of Ge2Sb2Te5 with different Bi contents (0, 0.5, 1, 3 mass%) for defining the kinetic triplet. Rutherford backscattering spectroscopy and X-ray diffraction were used to carry out elemental and phase analysis of the deposited films. Differential scanning calorimetry at eight different heating rates was used to investigate kinetics of thermally induced transformations in materials. Dependences of activation energies of crystallization (E a) on the degree of conversion were estimated by model-free Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, Tang and Starink methods. The obtained values of E a were quite close for all of these methods. The reaction models of the phase transitions were derived with using of the model-fitting Coats–Redfern method. In order to find pre-exponential factor A at progressive conversion values, we used values of E a already estimated by the model-free isoconversional method. It was established that the crystallization processes in thin films investigated are most likely describes by the second and third-order reactions models. Obtained kinetic triplet allowed predicting transition and storage times of the PCM cells. It was found that thin films of Ge2Sb2Te5 + 0.5 mass% Bi composition can provide the switching time of the phase change memory cell less than 1 ns. At the same time, at room temperature this material has a maximum storage time among the studied compositions.  相似文献   

17.
To accomplish an effective analysis of adsorption, the strong acid dye from aqueous solution of sodium alginate (SA) and multi-walled carbon nanotubes (MWCNTs) composite gel beads were used as important parameters. Differential scanning calorimetry (DSC) was used to measure the heat of breakdown reaction. The experimental conditions were set at 0.5, 1, 2, 4, and 8 °C min?1, and the temperature range was 30–300 °C. The heating rates and the temperature range were set as follows: Four kinds of proportion in this experiment contained 2 SA % w/v (SA), 0.03, 0.09, 0.18, 0.36 % w/v (MWCNTs), and 10 % w/v calcium chloride, respectively. Four samples, 5, 6, 7, 8, and 9 mg, were used to detect the experimental data. It contributed to understanding the reaction for the distinctive MWCNTs. With the thermokinetic data by isoconversional approach obtained from advanced kinetics and technology solutions (AKTS), the related thermal safety information can be obtained from the thermal reaction of MWCNTs. Valuable parameters, such as activation energy (E a) and heat of decomposition, can be applied in operation, including adsorption and desorption processes. After DSC tests, and under the four compositions of SA/MWCNTs, at different heating rates of 0.5, 1, 2, 4, and 8 °C min?1, primarily we found that when the heating rate was increased, exothermic onset temperature would increase gradually. After analyzing E a value by isoconversional kinetics, we learned that in four different adsorption compositions, SA/MWCNTs0.03 (161.20 kJ mol?1) was the minimum. Among them, the highest value was SA/MWCNTs0.18 (220.48 kJ mol?1). However, in this study, for SA/MWCNTs compositions we found that E a value will drop in the final material SA/MWCNTs0.36. Accordingly, if the ratio of SA and calcium chloride was fixed, then different compositions of the MWCNTs would affect adsorption efficiency of SA/MWCNTs and E a variation.  相似文献   

18.
The decomposition kinetics of glycerol diglycidyl ether (GDE)/3,3-dimethylglutaric anhydride/nanoalumina composite have been investigated by thermogravimetry analysis under nonisothermal mode. The activation energy, E a, of the solid-state decomposition process was evaluated using the advanced isoconversional method. From the experimental data, the dependence of conversion on temperature and activation energy was constructed allowing calculating the master plots. Our results showed that the decomposition mechanism at temperatures below 400 °C could be fitted by R2 kinetic model with E = 143 kJ mol?1. The information about the kinetic parameters based only on thermal degradation data has been used for quick lifetime estimation at different temperatures. The Vyazovkin method was also employed to predict the times to reach α = 0.5 at isothermal mode using the activation energy calculated by the advanced isoconversional approaches. Scanning electron microscopy (SEM) analysis was carried out to investigate the fracture surface morphology. It was revealed from the SEM images that the presence of nanoalumina results in reinforcement of GDE matrix.  相似文献   

19.
The cure of a bismaleimide (BMI) neat resin modified with an aromatic diamine and a siloxane elastomer, has been studied by 13C solid state nuclear magnetic resonance. Two chemical reactions occur during the cure cycle; at a low temperature, Michael's reaction predominates, while at a high temperature the polymerization of the double bond maleimide creates the network. The degradation of this BMI material was characterized with isothermal and dynamic thermogravimetric analyses in air and in nitrogen. The BMI thermal stability is lower in nitrogen than in air. This behavior is an indication of oxygen participating in reactions at high temperatures. The activation energy (Ea) of thermal degradation was determined from isothermal data using an Arrhenius equation (In V vs. 1/T). The global Ea for the weight loss in air was found to be 91 kJ/mol. The nature and the evolution of the thermal degradation products were the combined analyzed by techniques of pyrolysis, gas chromatography and mass spectrometry. The major thermal decomposition products obtained in the temperature range of 300–700°C are identified as benzene, methyl formamide, aniline, toluene and isocyanate-derived products.  相似文献   

20.
This paper is aimed to analyse the thermal behaviour in air of edible mushrooms through nonisothermal (TG, DTG, DTA) and calorimetric (Berthelot calorimeter) methods. The studied mushrooms were Pleurotus ostreatus spontaneously grown and from culture and Agaricus bisporus from culture, currently used in alimentation but insufficiently investigated from this point of view. The analysis of TG–DTG–DTA curves has indicated that the degradation mechanism is complex and characteristic to every species and major differences between the cap and the stipe of investigated mushrooms have not been recorded. These species are thermally stable in the range of 30–160 °C. The thermal stability in terms of initial degradation temperature (T i °C) and the temperature corresponding to the conversion grade (T α=0.03 °C) indicate that the stipe has a thermal stability close to the cap one and that the cultivated mushrooms are more thermally stable than those spontaneously grown. The obtained results concerning the combustion of the sample using Berthelot calorimeter are in accordance with the TG–DTG–DTA analysis. The residue obtained is a measure of the mineral content and is quantitatively close.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号