首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Montmorillonite was organically modified using an ammonium salt containing 4-acetylbiphenyl. This clay (BPNC16 clay) was used to prepare polystyrene (PS), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) nanocomposites. Polystyrene nanocomposites were prepared both by in situ bulk polymerisation and melt blending processes, while the ABS and HIPS nanocomposites were prepared only by melt blending. X-ray diffraction and transmission electron microscopy were used to confirm nanocomposite formation. Thermogravimetric analysis was used to evaluate thermal stability and the flammability properties were evaluated using cone calorimetry. By thermogravimetry, BPNC16 clay was found to show high thermal stability, and by cone calorimetry, a decrease in both the peak heat release rate and the mass loss rate was observed for the nanocomposites.  相似文献   

2.
The calorimetric characteristics, the flammability, the thermal stability and the microhardness of polyethylene high density/clay nanocomposites (HDPE/clay) have been studied by differential scanning calorimetry, thermogravimetry, determination of limiting oxygen index and microhardness tests. The nanocomposites have been compatibilized by ethylene–acrylic acid copolymer (EAA), acrylic acid grafted HDPE (HDAA) and maleic anhydride grafted HDPE (HDMA). The clay was montmorillonite Cloisite 15A. The influence of the presence and the type of the compatibilizers on the properties of the nanocomposites has been evaluated. The results have shown that the thermal stability, the reduction of the flammability and the microhardness of HDPE/clay nanocomposites, compatibilized by HDAA and HDMA are higher than those for nanocomposite compatibilized by EAA. Moreover, the presence and the type of compatibilizer have negligible effect on the characteristics of the HDPE phase transitions. These results have been interpreted by the better clay dispersion and higher level of clay exfoliation in the presence of compatibilizers HDAA and HDMA, than those in the presence of EAA compatibilizer.  相似文献   

3.
A study on the thermal behavior and flammability properties of the heterophasic polypropylene-(ethylene-propylene) copolymer (PP-EP)/poly(ethylene vinyl acetate) (EVA)/montmorillonite nanocomposite is presented. Nanoclay nanocomposites were prepared using a twin screw extruder. Both the fluidity of the EVA phase and compatibility conditions between PP-EP and EVA were used in order to obtain the required nanocomposites. Therefore, no additional compatibilizer was required to achieve the clay dispersion. Products exhibited the partially exfoliated/intercalated nanoclay dispersion. Thermogravimetric analyses indicated that nanoclays retard thermal degradation depending on nanoclay concentration. The retarding process was assigned to the exfoliation and dispersion of the silicate layers which impeded heat diffusion to the macromolecules. Thermal studies, under non-isothermal crystallization, indicated the lack of influence of nanoclay on the thermal behavior. Flammability characteristics were however affected by the nanoclay layers which overall generated flame retardation both in the EVA host and in the complex nanocomposites.  相似文献   

4.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

5.
Nylon 6 (PA6)/clay hybrids have been prepared using a direct melt intercalation technique by two processes. One is PA6 melt-mixing with modified clay, the other is PA6 melt-mixing with natural (Na+ base) clay using an ammonium salt bearing long alkyl chains as a polymer/clay reactive compatibilizer. Their structure and flammability properties are characterized by X-ray diffraction, transmission electron microscopy and cone calorimeter experiments. The results of the cone calorimeter experiments show that hybrids made by these two processes have a lower heat release rate peak and higher thermal stability than that of original PA6. Meanwhile, X-ray diffraction was used to investigate PA6/clay hybrids with various cooling histories from the melt, including medium-rate cooling (air cooling) and rapid cooling (water-quenched). In contrast to pure PA6 dominated by the α phase, the addition of clay silicate layers by these two methods favors the formation of the γ crystalline phase in PA6/clay hybrids. Flammability and phase-transition studies confirm that silicate layers added by these two methods have a similar nanoeffect and nanodispersion in the PA6 matrix.  相似文献   

6.
Chlorinated polyethylene (CPE)/organophilic-montmorillonite (Cloisite®30B (CL30B)) nanocomposites have been prepared by melt intercalation using (poly(ε-caprolactone), (PCL)) as CPE/clay compatibilizer. Actually, a high clay content masterbatch-based on PCL was first produced and then dispersed by melt blending within CPE. CPE/CL30B nanocomposites was also prepared by direct blending of CPE with CL30B for sake of comparison. All the composites were characterized by wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The thermal stability of the nanocomposites was analyzed by thermogravimetric analysis (TGA) while the mechanical properties were assessed by tensile testing. When using low molecular mass PCL chains as compatibilizer, the nanocomposites displayed a rather intercalated structure but their ultimate properties remained unchanged whereas with high molecular weight PCL chains, clay delamination was favoured and led to an increase of both thermal and mechanical properties of the resulting nanocomposites.  相似文献   

7.
Nylon 6/Cu2+-exchanged and Fe3+-exchanged montmorillonite nanocomposites have been prepared by a melt intercalation technique directly from Cu2+-exchanged and Fe3+-exchanged montmorillonite. Hexadecyltrimethylammonium bromide was chosen as the clay/matrix reactive compatibilizer. The intercalation spacing and the degree of dispersion were determined by X-ray diffraction and transmission electron microscopy. Also the thermal character of the nanocomposites prepared was analyzed by thermogravimetric analysis.  相似文献   

8.
In this study, different modified polyethylenes with different molar masses and different modification rates were examined as compatibilizers to prepare high density polyethylene/organoclay nanocomposites. Nanocomposites having 5 wt % organo-modified clay and 20 wt % interfacial agent were prepared by melt blending. The effect of compatibilizer molar mass and polarity was investigated on the clay dispersion and on the gas barrier properties. It was observed that the amount of large and dense fillers aggregates was considerably reduced by introduction of an interfacial agent. The nanocomposite final morphology was governed by a diffusion/shear mechanism. A high degree of clay delamination was obtained with the high molar mass compatibilizers, whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. In the investigated nanocomposites series, the barrier properties could not be directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. A gas transport mechanism based on these both parameters was proposed to explain the barrier properties evolution in these low polar nanocomposites series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2593–2604, 2008  相似文献   

9.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

10.
The synthesis of poly(butylene terephthalate) (PBT) nanocomposites by in situ polymerisation method using an organo-modified layered doubled hydroxide is described. 4-Sulfobenzoic acid potassium salt, sodium dodecyl sulfate and dimethyl 5-sulfo isophthalate sodium salt were used as intercalating compounds to improve clay exfoliation. The thermal and dynamic mechanical properties of the nanocomposites prepared were investigated and compared to those of montmorillonite-type nanocomposites prepared by similar synthetic route. The nanocomposites obtained, independent of the degree of exfoliation, showed better dynamic mechanical properties respect to PBT homopolymer while improvements in thermal stability were achieved when dimethyl 5-sulfo isophthalate was used as intercalating agent, highlighting the importance of the interactions of ionic groups covalently linked to the polymer with the charged clay platelets.  相似文献   

11.
Clay was modified with an oligomeric surfactant containing styrene and lauryl acrylate units along with a small amount of vinylbenzyl chloride to permit the formation of an ammonium salt so that this can be attached to a clay. The oligomerically-modified clay contains 50% inorganic clay, and styrenic polymer nanocomposites, including those of polystyrene (PS), high-impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN) and acrylonitrile-butadiene-styrene (ABS), were prepared by melt blending. The morphologies of the nanocomposites were evaluated by X-ray diffraction and transmission electron microscopy. Mixed intercalated/delaminated nanocomposites were formed for SAN and ABS while largely immiscible nanocomposites were formed for PS and HIPS. The thermal stability and fire properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticization from the oligomeric surfactant was suppressed and the tensile strength and Young's modulus were improved, compared to similar oligomerically-modified clays with higher organic content.  相似文献   

12.
Polyethylene and polypropylene nanocomposites were prepared using a novel oligomerically-modified clay that contains three components, styrene, lauryl acrylate and vinylbenzyl chloride. The nanocomposites were prepared by directly melt blending the polymers with the clay and they were characterized by X-ray diffraction and transmission electron microscopy, to understand their morphology, and their thermal stability, flammability and mechanical properties were evaluated using thermogravimetric analysis, cone calorimetry and mechanical testing, respectively. The reduction in peak heat release rate is about 60% at 5% inorganic clay loading and 70% at 8% inorganic clay loading.  相似文献   

13.
Nylon 66–clay (polyamide 66 (PA66)–organophilic montmorillonite (OMT)) exfoliated nanocomposites were synthesized based on nylon 66 salt and organoclay (OMT) modified by hydro-aminocaproic acid via condensation polymerization. And the nanocomposites were characterized by X-ray diffraction and transmission electronic microscopy. Exfoliated morphology with different clay content was obtained. The effects of cation exchange capacity and organic modified agent of OMT on the formation of exfoliated nanocomposites were investigated. It was shown that only suitable cation exchange capacity and organic modified agent could result in the formation of exfoliated morphology under the condition of condensation polymerization. The thermal and flammability properties of the nanocomposites were investigated through thermogravimetry and cone calorimetry experiments. Results indicate that the exfoliated nanocomposites have enhanced thermal stability and flame retardant properties compared with pure PA66.  相似文献   

14.
Polylactic acid (PLA)/organo-montmorillonite nanocomposites were prepared by the solution casting method using chloroform as solvent. The clays were organically modified by four different modifiers, ternary amine with two alkyl (tallow) tails, primary amine containing silane with a single tail, ammonium salt with a single alkyl (tallow) tail, and ammonium salts with two alkyl (tallow) tails. The structural characterization of the nanocomposite films was performed using Raman spectroscopy and the internal structure of the nanocomposites in the nanometer range was studied using wide-angle X-ray diffraction analysis. All the nanocomposites exhibited superior improvement when compared to neat PLA. Differential scanning calorimetry (DSC) was performed to study the thermal behavior of the prepared composites. Among the used clay types, M24 was the most effective in improving the water vapor and oxygen barrier properties. Water vapor and oxygen permeability of the nanocomposite films were decreased up to 80 and 49% when using M24 clay, respectively. Surface properties of the films were investigated with dynamic contact angle measurements. The migration studies of neat PLA and nanocomposites were performed for three types of food simulants.  相似文献   

15.
A melt blending method was used to prepare ABS/clay and ABS-g-MAH/clay nanocomposites. Cone calorimeter and advanced rheological extension system (ARES©) were employed to measure flammability and dynamic rheological properties. The main aim is to establish a relationship between the clay network structure and flammability properties of polymer nanocomposites. From the results of dynamic rheological measurements, it was found that the clay network structure was formed in ABS-g-MAH/clay nanocomposites, which strongly affected the flammability properties of the nanocomposites. The clay network improves the melt viscosity and results in restraint on the mobility of the polymer chains during combustion, which leads to significant improvement of flame retardancy for the nanocomposites.  相似文献   

16.
增容剂对聚丙烯/粘土纳米复合材料热分解动力学的影响   总被引:12,自引:0,他引:12  
采用三单体固相接枝聚丙烯作为增容剂制备了聚丙烯粘土纳米复合材料.通过XRD和TEM表征了其纳米结构.利用动态TGA方法研究了聚丙烯和纳米复合材料的热稳定性.分别采用Flynn Wall Ozawa和Kissinger法研究了聚丙烯及其纳米复合材料的热分解动力学.结果都表明,蒙脱土的加入明显提高了聚丙烯的起始热分解温度,纳米复合材料热失重10%时的温度比聚丙烯提高40K左右;纳米复合材料的热分解温度区间明显比聚丙烯的窄;纳米复合材料热分解表观活化能明显增大,与聚丙烯相比提高50%以上.  相似文献   

17.
Polystyrene (PS)/clay nanocomposites were prepared with two different new intercalation organophilic clays, the phosphonium salt (APP) and the ammonium 4‐(4‐adamantylphenoxy)‐1‐butanamine (APB) salts, by emulsion polymerization technique. X‐ray diffraction and transmission electron microscopy were performed to characterize the layered structures of APB‐ and APP‐treated polymer–clay nanocomposites, and both resulted in exfoliated structures. Molecular weights of PS obtained from these nanocomposites are slightly lower than the virgin PS formed under similar polymerization conditions. Coefficient of thermal expansion showed approximately a 44–55% decrease for APB‐ and APP‐intercalated clay nanocomposites relative to the pure PS. Both Tg and thermal decomposition temperature of the PS component in the nanocomposite are higher than the virgin PS, implying that the presence of clay is able to enhance thermal stabilities of the PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1781–1787, 2007  相似文献   

18.
In this paper, cetyl pyridium chloride (CPC) was employed to modify the montmorillonite. TGA analysis shows that the organic modified clay has higher thermal stability than hexadecyl trimethyl ammonium chloride modified montmorillonite and is suitable to be used for preparing poly(butylene terephthalate) (PBT)/clay nanocomposites at the high temperature. And then PBT/clay nanocomposites were prepared by direct melt intercalation. The results of XRD, TEM and HREM experiments show the formation of exfoliated-intercalated structure. The thermal stability of the nanocomposites does not evidently decrease, but the char residue at 600 °C remarkably increase compared with pure PBT. DSC results indicate that clay improves the melting temperature, the crystallization rate and crystallinity of the PBT molecules in the nanocomposites.  相似文献   

19.
Clay-containing polymeric nanocomposites (PNC) are mixtures of dispersed clay platelets in a polymeric matrix. These materials show enhancement of physical properties, such as modulus, strength, and dimensional stability, as well as a reduction of gas permeability and flammability. The performance is related to the degree of clay dispersion (i.e., intercalation or exfoliation) and the bonding between the clay and the matrix. The main goal of this work has been to map the degree of dispersion as a function of independent variables (viz., magnitude of the interaction parameters, molecular weights, composition, etc.). In this paper, we present the results of the numerical analysis of the equilibrium thermodynamic miscibility using one- and two-dimensional (1D and 2D) models based on the self-consistent mean-field theory. In the limit, the 2D model reproduced the 1D model published results. The adopted 2D model considers the presence of four PNC components: solid clay platelets, low molecular weight intercalant, polymeric matrix, and end-functionalized compatibilizer. The simulations, with realistic values of the binary interaction parameters, were analyzed for potential exfoliation of PNC with a polyolefin as the matrix. The simulation results show that intercalation and exfoliation is expected within limited ranges of the independent variables. The presence of a bare clay surface (e.g., generated by thermal decomposition of intercalant or extraction by molten polymer) has a strong negative effect on the dispersion process. The simulation successfully identified the most influential factors, e.g., optimum ranges of the compatibilizer and the intercalant concentration.  相似文献   

20.
In this study, the use of low molecular weight oxidized polyethylenes (OxPE) with different molecular weight and acid number as a new type of compatibilizer in low density polyethylene (LLDPE)/org-clay nanocomposite preparation was examined. Nanocomposites having 5 phr (part per hundred) org-clay were prepared by melt processing. The effect of compatibilizer polarity and clay dispersion on the thermal, mechanical and barrier properties of the nanocomposites was investigated. It was observed that oxidized polyethylenes created a strong interfacial interaction between the clay layers and polymer phase based on the analysis of the linear viscoelastic behavior of the samples by small amplitude oscillatory rheometry. We showed that physical performance of the nanocomposites is not only affected by clay dispersion but also both melt viscosity and polarity of the oxidized polyethylene compatibilizers. It was found that oxygen permeability values of the nanocomposite samples prepared with the oxidized polyethylenes were lower than that of a sample prepared with conventional compatibilizer, maleic anhydride grafted polyethylene (PE-g-MA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号