首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and effective strategy to improve accuracy for Raman spectroscopic analysis of complex mixture samples by probing a measurement temperature yielding enhanced spectral selectivity has been demonstrated. For the evaluation, the determination of Kinematic Viscosity at 40 °C (KV@40) of lube base oil (LBO) samples was initially attempted. Partial least squares (PLS) was used to determine the KV@40 using Raman spectra of the samples collected at 8 different temperatures from 20 to 90 °C with 10 °C increments. Interestingly, the distinct temperature-induced spectral variation among the samples occurred at 50 °C, thereby resulting in the improved accuracy for determination of KV@40. Two-dimensional (2D) correlation analysis was also performed to find an additional supportive rationale for the improved accuracy. The strategy was further evaluated for the identification of soybean oil-adulterated olive oils using linear discriminant analysis (LDA). Similarly, the discrimination accuracy was improved around 80–90 °C due to the enhanced spectral selectivity between olive and soybean oils. In overall, these two results successfully demonstrate analytical effectiveness of the strategy.  相似文献   

2.
A method using correlation between intensities of spectral lines for increasing the precision and accuracy in emission spectral analysis is described.

Correlations in spectra of low and high voltage spark discharges, and a.c. and d.c. arcs are investigated.

Firstly, conditions were determined, under which correlation relationships between the analytical signal and the parameters following variations in the excitation and mass transfer processes are rectilinear, strong (correlation coefficients r 0.8), and stable in time and under which the regression coefficients do not depend on the investigated element concentration.

A quantitative spectral analysis method, in which either one “fixation pair”, controlling mass transfer changes in the radiation source, or two fixation pairs, following variations in the excitation and mass transfer conditions, are registered simultaneously with the analytical signal, was elaborated. Applications of the method in arc analysis of soils and ores and spark analysis of steels illustrate the improvement of both analytical precision and accuracy.  相似文献   


3.
We are currently developing miniaturized, chip-based electrophoresis devices fabricated in plastics for the high-speed separation of oligonucleotides. One of the principal advantages associated with these devices is their small sample requirements, typically in the nanoliter to sub-nanoliter range. Unfortunately, most standard sample preparation protocols, especially for oligonucleotides, are done off-chip on a microliter-scale. Our work has focused on the development of capillary nanoreactors coupled to micro-separation platforms, such as micro-electrophoresis chips, for the preparation of sequencing ladders and also polymerase chain reactions (PCRs). These nanoreactors consist of fused-silica capillary tubes (10-20 cm x 20-50 microns I.D.) with fluid pumping accomplished using the electroosmotic flow generated by the tubes. These reactors were situated in fast thermal cyclers to perform cycle sequencing or PCR amplification of the DNAs. The reactors could be interfaced to either a micro-electrophoresis chips via capillary connectors micromachined in polymethylmethacrylate (PMMA) using deep X-ray etching (width 50 microns; depth 50 microns) or conventional capillary gel tubes using zero-dead volume glass unions. For our chips, they also contained an injector, separation channel (length 6 cm; width 30 microns; depth 50 microns) and a dual fiber optic, near-infrared fluorescence detector. The sequencing nanoreactor used surface immobilized templates attached to the wall via a biotin-streptavidin-biotin linkage. Sequencing tracks could be directly injected into gel-filled capillary tubes with minimal degradation in the efficiency of the separation process. The nanoreactor could also be configured to perform PCR reactions by filling the capillary tube with the PCR reagents and template. After thermal cycling, the PCR cocktail could be pooled from multiple reactors and loaded onto a slab gel or injected into a capillary tube or microchip device for fractionation.  相似文献   

4.
Kim J  Hwang J  Chung H 《Analytica chimica acta》2008,629(1-2):119-127
Both near-infrared (NIR) and Raman spectroscopy have been studied for the quantitative measurement of components (H(3)PO(4), HNO(3), and CH(3)COOH) in an etchant solution and the corresponding prediction robustness has been evaluated. Both measurements were accomplished by illuminating radiation directly through a Teflon tube. Raman spectral features of each component were much clearer and more selective than those observed in the NIR spectrum. Especially, NIR spectral variation pertinent to H(3)PO(4) and HNO(3) were mostly based on the displacement and perturbation of water bands rather than due solely to NIR absorption. Therefore, the resulting spectral variations were not highly specific. When the validation set contained minor spectral variations resulting from a slight instrumental change, NIR prediction performance for all three components degraded substantially by showing obvious prediction bias. However, the accuracies of Raman predictions were maintained. Since partial least squares (PLS) models for each component were built using NIR spectra of poor specificity with broadly overlapping features, even minor spectral differences introduced by instrumental variations sensitively influenced the prediction performance of the NIR models. Overall, the selectivity (specificity) of a targeting spectroscopic method should be considered critically to secure prediction robustness for monitoring components in an etchant solution.  相似文献   

5.
Summary In order to avoid the influence of sample heterogeneity, matrix effects and the non-availability of well analyzed standard samples on the precision and the accuracy of spark source mass spectrometric analysis, metal and silicate samples are dissolved chemically. For quantitative analysis, isotope dilution and calibration with standard solutions are used, whereby a precision of better than ±3% and ±8%, respectively, is obtained. This development has improved the precision by about a factor of 3 and increased the reliability of the analysis.
Verbesserung der Genauigkeit und der Richtigkeit der funken-massenspektrometrischen Analyse durch chemisches Auflösen der Probe und Anwendung der Isotopenverdünnungsmethode
Zusammenfassung Um den Einfluß der Probenheterogenität, von Matrixeffekten und des Fehlens von gut analysierten Standardproben auf die Genauigkeit und Richtigkeit der funken-massenspektrometrischen Analyse zu vermeiden, sind metallische und silicatische Proben chemisch gelöst worden. Zur quantitativen Analyse wird die Isotopenverdünnungsmethode und eine Eichung mit Standardlösungen verwendet, wobei eine Genauigkeit von besser als ±3% bzw. ±8% erreicht wird. Diese Entwicklung hat die Genauigkeit gegenüber der direkten Methode um einen Faktor von ungefähr 3 verbessert und die Zuverlässigkeit der Analyse erhöht.
  相似文献   

6.
Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) plays an indispensable role in analyzing protein covalent structures. The reliable identification of amino acid residues and modifications relies on the mass accuracy, which is highly dependent on calibration. However, the accuracy provided by the currently available calibrants still needs further improvement in terms of compatibility with multiple tandem MS modes or ion polarity modes, calibratable range, and minimizing su...  相似文献   

7.
Closing carbon mass balances is a critical and necessary step for verifying the performance of any conversion process. We developed a methodology for calculating carbon mass balance closures for a cellulase production process and then applied measurement uncertainty analysis to calculate 95% confidence limits to assess the accuracy of the results. Cellulase production experiments were conducted in 7-L fermentors using Trichoderma reesei grown on pure cellulose (Solka-floc), glucose, or lactose. All input and output carbon-containing streams were measured and carbon dioxide in the exhaust gas was quantified using a mass spectrometer. On Solka-floc, carbon mass balances ranged from 90 to 100% closure for the first 48 h but increased to 101 to 135% closure from 72 h to the end of the cultivation at 168 h. Carbon mass balance closures for soluble sugar substrates ranged from 92 to 127% over the entire course of the cultivations. The 95% confidence intervals (CIs) for carbon mass balance closure were typically ±11 to 12 percentage points after 48 h of cultivation. Many of the carbon mass balance results did not bracket 100% closure within the 95% CIs. These results suggest that measurement problems with the experimental or analytical methods may exist. This work shows that uncertainty analysis can be a useful diagnostic tool for identifying measurement problems in complex biochemical systems.  相似文献   

8.
Long-term predictions of material properties such as stiffness and creep resistance are important in many engineering applications and require high reliability and accuracy. This is especially true for polymer materials and their composites as their viscoelastic nature results in time-dependent material behaviour and any measurement uncertainties or errors amplify in long-term predictions. To measure this behaviour at smallest loadings, Dynamic Mechanical Analysis (DMA) is frequently declared as an ideal method. However, the measurement accuracy and repeatability of this method is strongly influenced by (i) the testing fixture and corresponding loading mode, (ii) the sample preparation and (iii) the plotting scale to interpret the test results. In this study, relevant experimental parameters were found for DMA and a proper procedure was designed, which was then applied to measure the viscoelastic behaviour of a highly temperature and creep resistant thermoplastic polymer (polyethersulfone) and of a highly graphite filled polypropylene composite. In combination with finite element simulations and in-situ strain measurements by digital image correlation (DIC), the main influences on measurement accuracy of three-point-bending DMA were identified and subsequently used to determine measurement guidelines. Using these guidelines, DMA measurements allow quantitative determination of the viscoelastic response for rigid polymer and composite materials.  相似文献   

9.
Epstein MS  Buehler B  Bullard MF 《Talanta》1998,47(1):95-102
The measurement precision and accuracy that results from the use of a sample introduction peristaltic pump system for automated instrument calibration and analysis is compared to manual methods based on traditional gravimetric and volumetric dilution procedures for flame atomic absorption analyses in water and serum matrices. Whilst use of the automated system improves speed of analysis, measurement precision was found to be approximately 2-fold worse than the manual methods based on gravimetric and volumetric dilution procedures.  相似文献   

10.
11.
The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schrodinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method.  相似文献   

12.
The experimental determination of average mass by mass spectrometry is limited for large molecules due to the negative bias introduced by the natural distribution of isotopic abundances. This results in the measurement of the top-of-centroid (ToC) as opposed to the true centroid. We have developed a practical correction factor that is applied to the ToC measurement to largely remove the systematic bias introduced by nature. The correction factor is calculated easily using the average molecular mass (<100 kDa) of the analyte molecule and the full-width half maximum resolving power (<3,500) of the measurement. In addition, an approach to calculating resolving power is described that accurately predicts resolving power achievable for Fourier transform ion cyclotron resonance (FT-ICR) mass analysis of large molecules. A combination of internal calibration with a dual-electrospray source and application of the correction factor to average mass measurements improved the mass error from 192.5 to -35.0 ppm for a 44 kDa PCR amplicon.  相似文献   

13.
Accurate analytical results with known uncertainty are required for the safety assessment of pesticides and testing the conformity of marketed food and feed with the maximum residue limits. The available information on various sources of errors was examined with special emphasis to those which may remain unaccounted for based on the current practice of many laboratories. The method validation typically covers the steps of the pesticide residue determination from the extraction of spiked samples to the instrumental determination, which contribute to only 10–40% of total variance of results. Though the variability of sampling, sample size reduction and sample processing may amount to the 60–90% of total variance, it generally remains unnoticed leading to wrong decisions. Another important source of gross error is the mismatch of the residues analysed and those included in the relevant residue definition. Procedures which may be applied for eliminating or reducing the errors are discussed.  相似文献   

14.
Chan Park S  Shinzawa H  Qian J  Chung H  Ozaki Y  Arnold MA 《The Analyst》2011,136(15):3121-3129
A novel strategy is demonstrated to improve the accuracy for determination of polyethylene (PE) density using Raman spectroscopy by optimizing the temperature of sample measurement. Spectral features associated with the conformation change of the polymer induced by temperature may provide valuable information to quantify important polymer properties such as density. To evaluate possible existence of an optimal temperature providing improved quantitative accuracy, Raman spectra of PE pellets with different densities were collected at eight different temperatures from 30 to 100 °C at 10 °C intervals. Using the spectral datasets collected at each temperature, partial least squares (PLS) models were developed using the reference PE density values determined by a standard density gradient method at 23 °C. Interestingly, the most accurate determination of density was realized at 70 °C. Multiple perturbation two-dimensional (MP2D) correlation analysis and differential scanning calorimetry (DSC) were used to examine the origin of improved accuracy at 70 °C. From these analyses, the pre-melt behavior of the PE samples was identified below their melting temperatures. Structural variations induced at the pre-melt stages enhance Raman spectral selectivity among the samples, thereby providing more accurate determination of PE density. The MP2D correlation analysis revealed the unforeseen thermal behavior of PE samples and successfully explained the improved accuracy at 70 °C.  相似文献   

15.
Characteristic geological features and hydrated minerals recently found on the surface of Mars by the NASA planetary rovers Spirit and Opportunity suggest that a possible biosphere could have once existed there. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA-ExoMars mission scheduled for 2018. Raman spectroscopy is currently a part of the Pasteur instrumentation suite of the ExoMars mission scheduled for 2018 for the remote detection of extant or extinct life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified, and the biogeological modifications incurred as a result of extremophilic survival activity have been studied. Polyaromatic hydrocarbons (PAHs) are recognised as a class of degradation product that occur from biological processes terrestrially. In this work, various concentrations of polyaromatic hydrocarbons in matrices of gypsum, calcite and quartz have been investigated by Raman microspectrometry to determine the lowest detectable organic levels. The studies are conceived in simulation of their potential PAHs identification in geobiological conditions in Martian scenarios. Two laser source wavelengths, namely, 785 and 633 nm, were adopted to excite Raman spectra from the PAHs, which represent degraded carbons and therefore potentially provide a key bimolecular marker of ancient life.  相似文献   

16.
A simple, low cost system for the backflushing of capillary gas chromatography (GC) columns has been investigated and integrated into a method for the detection of anabolic steroids in equine urine. The modification to the method was simple to make and quick to setup and optimize. The use of backflushing technology was found to offer significant benefits in terms of sample throughput and improved system robustness.  相似文献   

17.
18.
19.
The measurement of trace-element concentration in soil, sediment and waste, is generally a combination of a digestion procedure for dissolution of elements and a subsequent measurement of the dissolved elements. “Partial” and “total” digestion methods can be used in environmental monitoring activities. To compare measurement results obtained by different methods, it is crucial to determine and to maintain control of the bias of the results obtained by these methods. In this paper, ICP-MS results obtained after matrix digestion with modified aqua regia (HCl+HNO3+H2O2) method and two “total” digestion methods (microwave aqua regia+HF and HNO3+HF) are compared with those obtained by instrumental neutron activation analysis, a non-destructive analytical method for the determination of the total mass concentrations of inorganic components in environmental matrices. The comparison was carried out on eight agricultural soil samples collected in one test area and measured by k0-INAA and ICP-MS to determine As, Co, Cr, Sb and Zn mass concentration. The bias of results for As, Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn of the three digestion methods were assessed using selected measurement standards. This paper highlights that the digestion procedure is an integral part of the measurement and can affect the measurement result in environmental analysis.  相似文献   

20.
Speed and low cost, together with regulatory approval, are the most important requirements of clinical assays. Therefore, a fast and automated on‐line sample preparation method is essential for the routine analysis of biological samples. Microextraction by packed sorbent is an option for optimal sample preparation due to its easy automation, minimal requirements for the sample and elution solvent volumes, elimination of evaporation and reconstitution steps, and ability to integrate sample preparation and injection into one step. The use of effective sample preparation steps circumvents the need for chromatographic separation and therefore allows more rapid and less expensive sample analysis in clinical and forensic practice. Two biologically active compounds, amphetamine and methadone, were chosen as representative drugs of abuse for the application of microextraction by packed sorbent coupled directly to mass spectrometry. The developed method was validated, with the results confirming the suitability of the combination of these techniques for the analysis of biological samples. The approach was confirmed to be appropriate for use in clinical and forensic practice with regard to cost and time requirements for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号