首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电致发光材料的分子设计研究   总被引:1,自引:0,他引:1  
建立了一套用量子化学理论,对电发光过程的每一步:包括空穴和电子注入,空穴和电子传输,空穴和电子复合形成激子、发光,进行表征、计算、研究的方法.用这套方法,对有机共轭化合物、金属有机配合物、高聚物和低聚物进行了计算研究,通过分子设计,改变分子结构,实现对发光波长及载流子注入与传输速率的调控,为得到各方面品质优良的OLED材料提供了理论上的支持.  相似文献   

2.
Developing high-performance advanced materials requires a deeper insight and search into the chemical space. Until recently, exploration of materials space using chemical intuitions built upon existing materials has been the general strategy, but this direct design approach is often time and resource consuming and poses a significant bottleneck to solve the materials challenges of future sustainability in a timely manner. To accelerate this conventional design process, inverse design, which outputs materials with pre-defined target properties, has emerged as a significant materials informatics platform in recent years by leveraging hidden knowledge obtained from materials data. Here, we summarize the latest progress in machine-enabled inverse materials design categorized into three strategies: high-throughput virtual screening, global optimization, and generative models. We analyze challenges for each approach and discuss gaps to be bridged for further accelerated and rational data-driven materials design.

The grand challenge of materials science, discovery of novel materials with target properties, can be greatly accelerated by machine-learned inverse design strategies.  相似文献   

3.
介绍了双光子吸收材料分子设计原理.为了设计有大的双光子吸收响应的材料,对多种分子进行了系统的理论研究.用量子化学密度泛函理论和AM1方法进行分子几何构型优化.在优化结构的基础上,用ZINDO和自编程序求得分子的单、双光子吸收性质.设计了一些未知化合物,以期为合成新的具有大的双光子吸收截面的材料提供理论根据.以双层二聚二甲苯邻甲酸衍生物、铂乙炔化物、卟啉衍生物、C60、C70、八极矩分子为例,报道了我们在这方面的研究结果.  相似文献   

4.
The computational design of new and interesting inorganic materials is still an ongoing challenge. The motivation of these efforts is to aid the often difficult task of crystal structure determination, to rationalize different but related structure types, or to help limit the domain of structures that are possible in a given system. Over the past decade, simulation methods have continuously evolved towards the prediction of new structures using minimal input information in terms of symmetry, cell parameters, or chemical composition. So far, this task of identifying candidate structures through an analysis of the energy landscape of chemical systems has been particularly successful for predominantly ionic systems with relatively small numbers of atoms or ions in the simulation cell. After an introductory section, the second section of this work presents the historical developments of such simulation methods in this area. The following sections of the work are dedicated to the introduction of the building unit concept in simulation methods: we present simulation approaches to structure prediction employing both primary (aggregate of atoms) and secondary (aggregate of coordination polyhedra) building units. While structure prediction with primary units is a straightforward extension of established approaches, the AASBU method (automated asssembly of secondary building units) focusses on the topology of network-based structures. This method explores the possible ways to assemble predefined inorganic building units in three-dimensional space, opening the way to the manipulation of very large building units (up to 84 atoms in this work). As illustrative examples we present the prediction of candidate structures for Li(4)CO(4), the identification of topological relationships within a family of metalphosphates, ULM-n and MIL-n, and finally the generation of new topologies by using predefined large building units such as a sodalite or a double-four-ring cage, for the prediction of new and interesting zeolite-type structures.  相似文献   

5.
有机光电导(OPC)材料分子设计的研究   总被引:2,自引:0,他引:2  
陈红征  汪茫  杨士林 《有机化学》1996,16(3):227-231
本文在分析了有机光电导材料的分子结构, 电子分布状态以及电荷转移与光电导性能之间关系的基础上, 进行了有机光电导材料的分子设计, 并以酞菁聚合物的合成和光电导性的研究实施进行了验证。  相似文献   

6.
The change in selectivities by thermal treatment was studied on crystalline (C-SbA) and amorphous (A-SbA) antimonic(V) acids. The equilibrium distribution coefficients (Kd) of Na+ and K+ ions in HNO3 solution showed a maximum on the C-SbA heated at 330 °C. An inverse relationship was noticed between the changes in Kd values and in the lattice constants for the heated C-SbA. A-SbA heated at 20–500°C showed two steps of time dependence of adsorption for Na+, while a maximum for K+. This behavior can be explained in terms of the transformation from amorphous material to C-SbA.  相似文献   

7.
In this work, we investigate oligopyrroles and derivatives, which serve as models for corresponding polymers. In order to discuss these materials, we carried out DFT calculations and used DFT methods to calculate ground state electronic structures. We are particularly interested in exploring the potential of several substituent groups as electron donors with numerous ties to electronic materials by exploring and comparing the energies of HOMO, LUMO, Gap energies, and structural properties. Results are discussed in comparison with the properties of the doped oligomers. The theoretical ground-state geometry and electronic structure of the studied molecules were obtained by the DFT method at B3LYP level with 6-31G(d) basis set. The opto-electronic properties of these materials were determined by ZINDO/s and TD//B3LYP/6-31G(d) calculations performed on the B3LYP/6-31(d) optimized geometries. The results of this study demonstrate how electronic properties can be tuned by the backbone ring or side group and suggest these compounds as good candidates for opto-electronic applications.  相似文献   

8.
Hybrid organic–inorganic materials exhibit so versatile properties that they can be considered one of the most interesting classes of materials for photonic applications, for the development of both passive and active devices. A synthetic route used for the preparation of nanostructured organic/inorganic (O/I) materials is the assembling of nano-building blocks (NBBs). This approach allows controlling the extent of phase interaction, which in its turn governs the structure-properties relationships. The non-hydrolytic sol–gel process is recognized as a useful route for the preparation of nanostructured molecular units. The condensation reaction of methacryloxypropyl trimethoxysilane and diphenylsilanediol in a non-hydrolytic sol–gel process has been exploited in order to synthesize nanostructured molecular units for the preparation of hybrid organic/inorganic coatings. The non-hydrolytic condensation reactions were run adding different compounds such as triethylamine, titanium isopropoxide, titanium chloride, and dibutyldilauryltin as condensation promoters. The NBB synthesis was also run under controlled hydrolitic conditions, by exploiting the in situ water production using an ethanol/acetic acid mixture. These reactions have been compared in terms of the influence of the employed reagents on the condensation degree and the product structure. Multinuclear NMR, ATR-FTIR and FT-Raman techniques have been used to study the reaction steps and characterize the final condensation products. Hybrid O/I materials have been prepared by assembling methacrylate-based NBBs in the presence of suitable thermal and photo-initiators. The study on the progress of the thermal polymerization process using differential scanning calorimetry (DSC) will be presented, as well as the preliminary results on the two photon polymerization (TPP) process for the preparation of patternable films.  相似文献   

9.
Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: approximately 200 degrees C for amorphous/mesoporous silica, approximately 230 degrees C for metal oxides, and approximately 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm(-1) for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.  相似文献   

10.
New inorganic materials (metals and their alloys, carbon materials, ceramics, glass, and glass-ceramics) that are used in one of the branches of medicine,viz., bone endoprosthetics and implantology, are considered. Attention is concentrated on calcium- and phosphoruscontaining glassy and glass-ceramic materials that exhibit bioactivity with respect to a living bone. The main statements of the modern theory of bioactivity of these materials are outlined; physicochemical aspects of this theory are considered in detail. Extensive possibilities for controlling the structures, medico-biological, physicochemical, and mechanical properties of bioactive glasses, glass-ceramics, ceramics, and composites based on them are demonstrated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 246–253, February, 1997.  相似文献   

11.
Organic/inorganic hybrid thin films for protein recognition have been prepared by the liquid-phase deposition (LPD) coupled with template synthesis, i.e., molecular imprinting, where pepsin (Pep) was used as a model protein and titanium oxide was deposited on gold substrates in the presence of Pep-poly-L-lysine (PL) complexes. The complexes remained in the templated film after the deposition, and the binding sites for Pep were constructured after Pep was removed from the film. Surface plasmon resonance signals on the deposited films were measured to examine the binding behaviors toward proteins. The binding of Pep on the templated film was reversible, and the binding isotherm of Pep depicted a saturation curve with a binding constant of 7.3 x 105 M(-1), which was 10 times higher than that of albumin. In contrast, titanium oxide films prepared without PL did not show any selectivity; therefore, the hybridization of PL as the organic binder with the inorganic material is necessary to obtain selective binding sites for Pep. It was also shown that the hybridization process should proceed without denaturing the template protein, in order to obtain selective binding sites for the template. The procedure for preparation of the films was simple to perform, and the process for hybridization of the thin films with nanometer-order thickness was easily controlled by changing the LPD reaction time period. Consequently, the proposed LPD coupled with template synthesis is among the most appropriate methods to prepare hybrid materials with protein recognition ability, which proceeds under mild conditions in aqueous solution.  相似文献   

12.
Xiao  Menghui  Jin  Xinghui  Zhou  Jianhua  Hu  Bingcheng 《Structural chemistry》2021,32(4):1619-1628
Structural Chemistry - Various 1,2,5-oxadiazole-1,2,3,4-tetrazole-based high-energy materials were designed and their properties investigated. Their heat of formation, detonation properties, and...  相似文献   

13.
In this short communication, we use a novel wettish precursor to solvothermally synthesize nanosized LiFePO4. This wettish precursor, prepared with a much simplified process, raise the utilization rate of autoclave, and, therefore, is easy to scale up for industrial production. The obtained product showed excellent electrochemical property and cycling stability.  相似文献   

14.
New approaches to solid-state reactivity have allowed us to develop unusual routes to porous inorganic materials. This article describes our recent work on template-free routes involving the selective leaching of one phase from a two-phase composite to form porous oxides. Subsequent reactions have been developed to yield porous metals, conformal coatings, and hierarchically porous materials. Pores can also be generated through simple redox processes in transition-metal oxides; such redox cycling allows mesopores to be produced in a regenerative process in a material which is already macroporous.  相似文献   

15.
Hydrophobicity and floatability of solids have been analyzed from the standpoint of properties of solid-water and solid-water vapors interfaces, chemical bonds, bulk properties, crystal structure of the solid, and reactivity of the solid with water. Although the hydrophobicity results from complex interactions in the solid-water-air system, simple equations and rules for predicting hydrophobicity and floatability are presented. The applicability of the Gaudin-Miaw-Spedden theory which states that molecular and sheet crystals, if their structure is controlled by the residual bonds across their basal planes, are floatable was confirmed. It was also shown that elements and compounds with different degrees of ionic-covalent and metallic-nonmetallic characters of bonds in the absence of residual bonds can be either hydrophilic, hydrophobic, or change their properties from hydrophobic to hydrophilic and vice versa. For some materials, hydrophobidty was found to be time-dependent. Decreasing hydrophobicity occurs with the oxidation and hydroxylation of the surface (oxides, metals), while increasing hydrophobicity takes place due to non-dissociative adsorption of water vapors on the surface (noble metals). Increased hydrophobicity can also be due to the formation of hydrophobic species such as sulfur species on the surface of Sulfides. It was demonstrated that the potential hydrophobicity of solids, expressed as the contact angle formed between the three involved (solid, water, and air) phases, can be evaluated from the Hamaker constants.This work supplements the Gaudin-Miaw-Spedden theory by showing that not only molecular crystals (paraffin, I2, S8, As4O6, As2S2) and non-ionic sheet crystals (MoS2, Sb2S3, talc, graphite, As2S3, boric acid, BN) but also elements and crystalline compounds without residual bonds can be hydrophobic and floatable. A partial list of such materials includes Hg, Ge, Si, SiC, AgI, CaF2, and diamond (whose hydrophobidties are already well known) as well as BaSO4, FeTiO3, In, and Sn (whose hydrophobidties have been established in this work). It was also demonstrated that the hydrophobidty of some solids changes as a result of reaction of the surface with constituents of the air.  相似文献   

16.
This paper discusses the use of two relative unexploited classes of molecules based on imino-dialkylphosphinate [(EPR2)2NH] (E = Se or Te) and dialkyldiselenophosphinate [HNEt3][R2PSe2] and subsequently, their potential for the deposition of useful materials as either thin films or nanoparticles. The structural properties of the materials obtained were elucidated by means of X-ray powder diffraction, scanning electron microscope and transmission electron microscope.  相似文献   

17.
2-Hydroxynicotinic acid (HNA) was grafted by 3-(triethoxysilyl)propyl isocyanate (TEPIC) to achieve the molecular precursor HNA-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of HNA and the isocyanate group of TEPIC. Then, a chemically bonded rare-earth/inorganic polymeric hybrid material (A) was constructed using HNA-Si as a bridge molecule that can both coordinate to rare-earth ions (HNA-Si-RE) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Further, three types of novel rare-earth/inorganic/organic polymeric hybrids (B-D) were assembled by the introduction of three different organic polymeric chains into the above system. First, methacrylic acid (MAA) [or methacrylic acid and acrylamide (ALM) in the molar ratio of 1:1] was mixed to polymerize (or copolymerize) with benzoyl peroxide (BPO) as the initiator to form poly(methacrylic acid) (PMAA) [or poly(methacrylic and acrylamide) (PMAALM)], and then PMAA or PMAALM was added to the precursor HNA-Si before the assembly of HNA-Si-RE, resulting in the hybrid materials HNA-Si-RE-PMAA (B) and HNA-Si-RE-PMAALM (C). Second, poly(vinylpyrrolidone) (PVP) was added to coordinate to the rare-earth ions by the carbonyl group in the complex HNA-Si-RE, to achieve the hybrid HNA-Si-RE-PVP (D). All of these hybrid materials exhibit homogeneous, regular, and ordered microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic polymeric hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary rare-earth/inorganic polymeric hybrids, indicating that the introduction of the organic polymer chain is a benefit for the luminescence of the overall hybrid system.  相似文献   

18.
Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.  相似文献   

19.
Abstract

Two trithiamacrocycles have been designed by molecular modelling to have preorganised endodentate sulfur donor atoms. These new macrocycles have five- and six-membered saturated heterocycles inserted into 2,5,8-trithia[9]-m-benzenophane; molecular dynamics simulations suggest that the endo forms will be rigid on a nanosecond timescale. Optimum metal-sulfur distances which the new ligands will accommodate lie between 2.76 Å and 2.95 Å, suggesting they will be particularly suitable for a large soft metal ion such as silver(I).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号