首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elucidating local dynamics of protein aggregation is crucial for understanding the mechanistic details of protein amyloidogenesis. Herein, we studied the residue‐specific dynamics and local environmental changes of Aβ40 along the course of aggregation by using para‐cyanophenylalanine (PheCN) as a fluorescent and vibrational probe. Our results show that the PheCN residues introduced at various positions all exhibited an immediate decay of fluorescence intensity, indicating a relatively synergistic process in early oligomer formation. The fast decreases in the fluorescence intensities of residues 19 and 20 in the central hydrophobic core region and residue 10 in the N‐terminal region suggest that they play crucial roles in the formation of the oligomeric core. The PheCN4 residue exhibits a remarkably slower decrease in fluorescence intensity, implicating its dynamic conformational characteristics in oligomer and fibril formation. Our results also suggest that the N‐terminal residues in fibrils are surrounded by a relatively hydrophobic local environment, as opposed to being solvated.  相似文献   

2.
Developing ideal IR probes is essential to understand the structure and dynamics of biomolecules with time-resolved IR spectroscopies and imaging techniques. Especially, nitrile (CN) group has recently been proposed to serve as IR probes of the local environment of proteins. Herein, we investigated the effect of a substituent on the vibrational properties of the benzonitrile. The electron-donating and withdrawing character of p-substituent on benzonitrile are expected to modulate the vibrational frequency, molar extinction coefficient, and vibrational lifetime of CN probe. FT-IR revealed the positive correlation between electron-donating character and the molar extinction coefficient of CN stretch mode. Infrared pump-probe (IR-PP) measurements showed that the vibrational lifetime of CN stretch mode exhibits a relatively weak correlation with the electron-donating strength. Among the investigated samples, 4-dimethylamino benzonitrile with the strongest electron-donating strength shows enhanced absorption and extended vibrational lifetime. Utilizing substituent effects will be a practical strategy to improve the performance of the IR probe.  相似文献   

3.
The nitrile (Ctriple bondN) group is a powerful probe of structure and dynamics because its vibrational frequency is extraordinarily sensitive to the electrostatic and chemical characteristics of its local environment. For example, site-specific nitrile labels are useful indicators of protein structure because their infrared (IR) absorption spectra can clearly distinguish between solvent-exposed residues and residues buried in the hydrophobic core of a protein. In this work, three variants of the optimized quantum mechanics/molecular mechanics (OQM/MM) technique for computing Ctriple bondN vibrational frequencies were developed and assessed for acetonitrile in water. For the most robust variant, the transferability of the OQM/MM methodology to different solutes and solvents was evaluated by simulating the IR absorption spectra of para-tolunitrile in water and tetrahydrofuran and comparing to experiment and density functional theory (DFT) calculations. The OQM/MM frequencies compared favorably to DFT for para-tolunitrile/water, and the calculated IR absorption spectra are in qualitative agreement with experiment. This suggests that a single parametrization of the OQM/MM technique is reasonable for the calculation of nitrile line shapes when the probe is attached to different chemical moieties and when the label experiences local environments of different polarity.  相似文献   

4.
The vibrational relaxation dynamics of pseudo-halide anions XCN- (X = O, S, Se) in polar solvents were studied to understand the effect of charge on solute-to-solvent intermolecular energy transfer (IET) and solvent assisted intramolecular vibrational relaxation (IVR) pathways. The T1 relaxation times of the CN stretch in these anions were measured by IR pump/IR probe spectroscopy, in which the 0-1 transition was excited, and the 0-1 and 1-2 transitions were monitored to follow the recovery of the ground state and decay of the excited state. For these anions in five solvents, H2O, D2O, CH3OH, CH3CN, and (CH3)2SO, relaxation rates followed the trend of OCN- > SCN- > SeCN-. For these anions and isotopes of SCN-, the relaxation rate was a factor of a few (2.5-10) higher in H2O than in D2O. To further probe the solvent isotope effect, the relaxation rates of S12C14N-, S13C14N-, and S12C15N- in deuterated methanols (CH3OH, CH3OD, CH3OH, CD3OD) were compared. Relaxation rate was found to be affected by the change of solvent vibrational band at the CN- stretching mode (CD3 symmetric stretch) and lower frequency regions, suggesting the presence of both direct IET and solvent assisted IVR relaxation pathways. The possible relaxation pathways and mechanisms for the observed trends in solute and solvent dependence were discussed.  相似文献   

5.
The thiocyanate (SCN(-)) anion is known as one of the best denaturants, which is also capable of breaking the hydrogen-bond network of water and destabilizing native structures of proteins. Despite prolonged efforts to understand the underlying mechanism of such Hofmeister effects, detailed dynamics of the ions in a highly concentrated solution have not been fully elucidated yet. Here, we used a dispersive IR pump-probe spectroscopic method to study the dependence of vibrational lifetimes and rotational relaxation times of thiocyanate ions on KSCN concentration in D(2)O. The nitrile stretch mode is used as a vibrational probe for dispersed IR pump-probe and FTIR measurements. To avoid possible self-attenuation of the IR pump-probe signal by highly concentrated SCN(-) ions, we added a small amount of (13)C-isotope-labeled thiocyanate ions (S(13)CN(-)) and focused on the excited-state absorption contribution to the IR pump-probe signal of the (13)C-isotope-labeled nitrile stretch mode. Quite unexpectedly, the vibrational lifetime of S(13)CN(-) ions is independent of the total KSCN concentration in the range from 0.46 m (molality) to 11.8 m while the rotational relaxation time of S(13)CN(-) ions is linearly dependent on the total KSCN concentration. By combining the present experimental findings with the fact that the dissolved ions of KSCN salt have a strong tendency to form a large ion cluster in a highly concentrated aqueous solution, we believe that the ion clusters consisting of potassium and thiocyanate ion pairs in D(2)O behave like ionic liquids and the ions inside ion clusters are weakly bound by electrostatic Coulombic interactions. The ability of SCN(-) ions to form ion clusters in aqueous protein solutions seems to be a key to understand the Hofmeister ion effect. We anticipate that the present experimental results provide a clue for further elucidating the underlying mechanism of the Hofmeister ion effects on protein stability in the future.  相似文献   

6.
Transient infrared and visible absorption studies have been used to characterize vibrational and electronic dynamics of Prussian blue (PB) and ruthenium purple (RP) nanoparticles produced and characterized in AOT reverse micelles. Studies include excitation and probing with both infrared (near 2000 cm(-1)) and visible (800 nm) pulses. From IR pump-IR probe measurements of the CN stretching bands, vibrational population lifetimes are determined to be 32 ± 4 ps for PB and 44 ± 14 ps for RP. These times are longer than those for ferrocyanide (4 ps) and ruthenocyanide (4 ps) in normal water and are closer to the times for these species in heavy water (25-30 ps) and for ferrocyanide in formamide (43 ps). The PB and RP lifetimes are also longer than those (<15 ps) previously measured for CN stretching bands following intervalence excitation and back-electron transfer (BET) for dinuclear mixed-valence compounds containing Fe, Ru, and Os in heavy water and formamide [A. V. Tivansky, C. F. Wang, and G. C. Walker, J. Phys. Chem. A 107, 9051 (2003)]. In 800 nm pump-IR probe experiments on RP and PB, transient IR spectra and decay curves are similar to those with IR excitation; a ground state bleach and a red shifted (by ~40 cm(-1)) excited state decay are observed. These results for the visible pumping are consistent with rapid (<1 ps) BET resulting in population in the ground electronic state with vibrational excitation in the CN mode. In addition, transient absorption studies were performed for PB and RP probing with visible light using both visible and IR excitation. The early time response for the 800 nm pump-800 nm probe of PB exhibits an instrument-limited, subpicosecond bleach followed by an absorption, which is consistent with the previously reported results [D. C. Arnett, P. Vohringer, and N. F. Scherer, J. Am. Chem. Soc. 117, 12262 (1995)]. The absorption exhibits a biexponential decay with decay times of 9 and 185 ps, which could have been attributed to the CN band excitation indicated from 800 pump-IR probe results. However, IR pump-800 nm probe studies reveal that excitation of the CN band directly results in a decreased visible absorption that decays in 18 ps rather than an induced absorption at 800 nm. Characteristics of the IR pump-800 nm probe, especially that it induces a bleach instead of an absorption, unambiguously indicate that the transient absorption from the 800 nm pump-800 nm probe is dominated by states other than the CN bands and is attributed to population in other, probably lower frequency, vibrational modes excited following visible excitation and rapid BET.  相似文献   

7.
Isotope-edited IR spectroscopy was used to study a series of singly and doubly 13C=O-labeled beta-hairpin peptides stabilized by an Aib-Gly turn sequence. The double-labeled peptides have amide I' IR spectra that show different degrees of vibrational coupling between the 13C-labeled amides due to variations in the local geometry of the peptide structure. The single-labeled peptides provide controls to determine frequencies characteristic of the diagonal force field (FF) contributions at each position for the uncoupled 13C=O modes. Separation of diagonal FF and coupling effects on the spectra are used to explain the cross-strand labeled spectral patterns. DFT calculations based on an idealized model beta-hairpin peptide correctly predict the vibrational coupling patterns. Extending these model results by consideration of frayed ends and the hairpin conformational flexibility yields an alternate interpretation of details of the spectra. Temperature-dependent isotopically labeled IR spectra reveal differences in the thermal stabilities of the individual isotopically labeled sites. This is the first example of using an IR-based isotopic labeling technique to differentiate structural transitions at specific sites along the peptide backbone in model beta-hairpin peptides.  相似文献   

8.
9.
In a recently reported study [Mukherjee, et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3528] we used 2D IR spectroscopy and 1-(13)C=(18)O isotope labeling to measure the vibrational dynamics of 11 amide I modes in the CD3zeta transmembrane domain. We found that the homogeneous line widths and population relaxation times were all nearly identical, but that the amount of inhomogeneous broadening correlated with the position of the amide group inside the membrane. In this study, we use molecular dynamics simulations to investigate the structural and dynamical origins of these experimental observations. We use two models to convert the simulations to frequency trajectories from which the mean frequencies, standard deviations, frequency correlation functions, and 2D IR spectra are calculated. Model 1 correlates the hydrogen-bond length to the amide I frequency, whereas model 2 uses an ab initio-based electrostatic model. We find that the structural distributions of the peptidic groups and their environment are reflected in the vibrational dynamics of the amide I modes. Environmental forces from the water and lipid headgroups partially denature the helices, shifting the infrared frequencies and creating larger inhomogeneous distributions for residues near the ends. The least inhomogeneously broadened residues are those located in the middle of the membrane where environmental electrostatic forces are weakest and the helices are most ordered. Comparison of the simulations to experiment confirms that the amide I modes near the C-terminal are larger than at the N-terminal because of the asymmetric structure of the peptide bundle in the membrane. The comparison also reveals that residues at a kink in the alpha-helices have broader line widths than more helical parts of the peptide because the peptide backbone at the kink exhibits a larger amount of structural disorder. Taken together, the simulations and experiments reveal that infrared line shapes are sensitive probes of membrane protein structural and environmental heterogeneity.  相似文献   

10.
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ~57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.  相似文献   

11.
2‐Acetylcyclopentanone (2‐ACP), which is a β‐dicarbonyl compound, undergoes ketoenol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2‐ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm?1, respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2‐ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump–probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down‐ and uphill population transfer rate constants), we used the normalized volumes of the cross‐peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes.  相似文献   

12.
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.  相似文献   

13.
Two-dimensional infrared photon echo and pump probe studies of the OH stretch vibration provide a sensitive probe of the correlations and couplings in the hydrogen bond network of liquid water. The nonlinear response is simulated using numerical integration of the Schrodinger equation with a Hamiltonian constructed to explicitly treat intermolecular coupling and nonadiabatic effects in the highly disordered singly and doubly excited vibrational exciton manifolds. The simulated two-dimensional spectra are in close agreement with our recent experimental results. The high sensitivity of the OH stretch vibration to the bath dynamics is found to arise from intramolecular mixing between states in the two-dimensional anharmonic OH stretch potential. Surprisingly small intermolecular couplings reproduce the experimentally observed intermolecular energy transfer times.  相似文献   

14.
Tripeptides form ternary complexes with Cu(2+) and 2,2'-bipyridine (bpy) that self-assemble upon mixing the components in aqueous methanol solution. Electrospray ionization (ESI) of the complex solutions provides abundant singly charged [Cu(peptide -- H)bpy](+) and doubly charged [Cu(peptide)bpy](2+) ions. Collision-induced dissociation (CID) at low ion kinetic energies of several tripeptides, AGG, GGA, LGG, GGL, GGI, FGG, GGF, LGF, GLF, GFL, GYA and GAY, showed fragments that were indicative of the amino acid sequence in the peptide. In addition, CID of single and doubly charged complexes of isomeric tripeptides GGL and GGI provided unambiguous distinction of the isomeric leucine and isoleucine residues. Leucine peptides eliminated C(3)H(7) radicals from the amino acid side-chain whereas isoleucine eliminated C(2)H(5) radicals. CID of gas-phase doubly charged peptide complexes in a quadrupole ion trap produced a series of singly charged sequence fragments that following isolation and further CID furnished distinct fragments that allowed quantitation of leucine and isoleucine-containing peptides in mixtures.  相似文献   

15.
Beta-azidoalanine dipeptide 1 was synthesized, and its azido stretching vibration in H2O and dimethyl sulfoxide (DMSO) was studied by using Fourier transform (FT) IR spectroscopy. The dipole strength of the azido stretch mode is found to be about 19 and 5 times larger than those of the CN and SCN stretch modes, respectively, which have been used as local environmental IR sensors. The azido stretch band in H2O is blue-shifted by about 14 cm(-1) in comparison to that in DMSO, indicative of its sensitivity to the electrostatic environment. To test the utility of beta-azidoalanine as an IR probe of the local electrostatic environment in proteins, azidopeptide 4 was prepared by its incorporation into Abeta(16-22) peptide of the Alzheimer's disease amyloid beta-protein at position Ala21. The amide I IR spectrum of 4 in D2O suggests that the azidopeptide thus modified forms in-register beta-sheets in aggregates as observed for normal Abeta(16-22). The azido peak frequency of 4 in aggregates is almost identical to that in DMSO, indicating that the azido group is not exposed to water but to the hydrophobic environment. We believe that beta-azidoalanine will be used as an effective IR probe for providing site-specific information about the local electrostatic environments of proteins.  相似文献   

16.
The linear IR and two-dimensional (2D) IR spectra of the amide-I modes of the 12-residue beta-hairpin peptide tryptophan zipper-2 (SWTWENGKWTWK) and its two 13C isotopomers were simulated, with local mode frequencies evaluated by two solution-phase peptide amide-I frequency maps proposed recently: an electrostatic potential map and an electrostatic field map. Both maps predict a set of nondegenerate local amide-I mode transition energies for the hairpin. Spectral simulations using both maps predict the main spectral features of the linear IR and 2D IR experimental results of the (13)C-labeled and -unlabeled hairpin. The radial distribution functions obtained using trajectories from classical molecular dynamics simulations demonstrate different water distributions at different sites of the hairpin. Our results suggest that the observed difference of the (13)C-shifted band, including its peak position and frequency distributions for different isotopomers, in both linear IR and 2D IR spectra, is likely to be due to the difference in the local environment of the solvated peptide. Ab initio density functional theory calculations show a residue-independent (13)C shift of the amide-I mode, further supporting the result. The variations of these shifts are attributed to the residue level heterogeneity of the electrostatic environment of the peptide. Our results show that 2D IR of peptide with single (13)C isotopic labeling can be used to probe the electrostatic environment of the peptide local structure.  相似文献   

17.
Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures.  相似文献   

18.
The vibrations in the azido-, N(3), asymmetric stretching region of 2'-azido-2'-deoxyuridine (N(3)dU) are examined by two-dimensional infrared spectroscopy. In water and tetrahydrofuran (THF), the spectra display a single sharp diagonal peak that shows solvent sensitivity. The frequency-frequency correlation time in water is 1.5 ps, consistent with H-bond making and breaking dynamics. The 2D IR spectrum is reproduced for N(3)dU in water based on a model correlation function and known linear response functions. Its large extinction coefficient, vibrational frequency outside the protein and nucleic acid IR absorption, and sensitivity to water dynamics render -N(3) a very useful probe for 2D IR and other nonlinear IR studies: its signal is ca. 100 times that of nitriles.  相似文献   

19.
Ultrafast two-dimensional infrared (2DIR) spectroscopy has been proven to be an exceptionally useful method to study chemical exchange processes between different vibrational chromophores under thermal equilibria. Here, we present experimental results on the thermal equilibrium ion pairing dynamics of Li(+) and SCN(-) ions in N,N-dimethylformamide. Li(+) and SCN(-) ions can form a contact ion pair (CIP). Varying the relative concentration of Li(+) in solution, we could control the equilibrium CIP and free SCN(-) concentrations. Since the CN stretch frequency of Li-SCN CIP is blue-shifted by about 16 cm(-1) from that of free SCN(-) ion, the CN stretch IR spectrum is a doublet. The temperature-dependent IR absorption spectra reveal that the CIP formation is an endothermic (0.57 kJ∕mol) process and the CIP state has larger entropy by 3.12 J∕(K?mol) than the free ion states. Since the two ionic configurations are spectrally distinguishable, this salt solution is ideally suited for nonlinear IR spectroscopic investigations to study ion pair association and dissociation dynamics. Using polarization-controlled IR pump-probe methods, we first measured the lifetimes and orientational relaxation times of these two forms of ionic configurations. The vibrational population relaxation times of both the free ion and CIP are about 32 ps. However, the orientational relaxation time of the CIP, which is ~47 ps, is significantly longer than that of the free SCN(-), which is ~7.7 ps. This clearly indicates that the effective moment of inertia of the CIP is much larger than that of the free SCN(-). Then, using chemical exchange 2DIR spectroscopy and analyzing the diagonal peak and cross-peak amplitude changes with increasing the waiting time, we determined the contact ion pair association and dissociation time constants that are found to be 165 and 190 ps, respectively. The results presented and discussed in this paper are believed to be important, not only because the ion-pairing dynamics is one of the most fundamental physical chemistry problems but also because such molecular ion-ion interactions are of critical importance in understanding Hofmeister effects on protein stability.  相似文献   

20.
The effect that charge state has on the collision-induced dissociation (CID) of peptide ions is examined in detail for several representative peptides under high-energy collision conditions. The CID spectra of singly and doubly charged precursor ions (generated by fast-atom bombardment and electrospray ionization, respectively) are compared for several peptides with similar primary structure. It is shown that for peptides that contain highly basic amino acids, the dissociation of doubly charged ions is strongly influenced by the position of these residues within the peptide and the general observations reported concerning the dissociation of singly charged ions can be extended to precursors with higher charge states. Based on the dissociation behavior of the doubly charged ions of these peptides, it is demonstrated that two charges can reside in close proximity in the precursor ions, overcoming possible repulsion effects, when favored by a high concentration of basic sites. In addition)’ this work illustrates that in the case of doubly charged ions..the charge state of some fragment ions can be determined directly from the mass-to-charge ratio assignments of the CID spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号