首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究非线性混合系统的实用稳定化问题,其中该系统具有时变子系统和时变跳转函数.首先,通过状态跳转函数,确定系统一条严格递增的切换时间序列.然后在该序列中的每一段时间区间内,明确地构造出相应的线性状态反馈控制律,由此实现闭环系统的实用稳定.最后,给出一个数值例子说明文中方法的有效性.  相似文献   

2.
In the analysis of complex, large-scale dynamical systems it is often essential to decompose the overall dynamical system into a collection of interacting subsystems. Because of implementation constraints, cost, and reliability considerations, a decentralized controller architecture is often required for controlling large-scale interconnected dynamical systems. In this paper, a novel class of fixed-order, energy-based hybrid decentralized controllers is proposed as a means for achieving enhanced energy dissipation in large-scale lossless and dissipative dynamical systems. These dynamic decentralized controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to hybrid closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that each subsystem–subcontroller pair of the hybrid closed-loop system is consistent with basic thermodynamic principles. Special cases of energy-based hybrid controllers involving state-dependent switching are described, and an illustrative combustion control example is given to demonstrate the efficacy of the proposed approach.  相似文献   

3.
In this paper we consider discrete-time positive switched systems, switching among autonomous subsystems, characterized either by monomial matrices or by circulant matrices. Necessary and sufficient conditions are provided guaranteeing either (global uniform) asymptotic stability or stabilizability (i.e. the possibility of driving to zero the state trajectory corresponding to any initial state by resorting to some switching sequence). Such conditions lead to simple algorithms that allow to easily detect, under suitable conditions, whether a given positive switched system is not stabilizable.  相似文献   

4.
This article introduces a hybrid stochastic differential system with impulsive, switching and time-delay. Some stability criteria of p-moment global asymptotical stability, p-moment global exponential stability and mean square stability of this system are derived by using switching Lyapunov function approach, Itô formula, impulsive differential inequality method, and linear matrix equality techniques. Three examples are presented to demonstrate the efficiency of the obtained results.  相似文献   

5.
This paper deals with the problem of adaptive fuzzy tracking control for a class of switched uncertain nonlinear systems. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and the adaptive backstepping and dynamic surface control techniques are adopted. First, a new state-dependent switching method is proposed. By introducing convex combination technique and designing a state-dependent switching law, only the solvability of the adaptive tracking control problem for a convex combination of the subsystems is necessary. Second, a new common Lyapunov function with switched adaptive parameters is constructed to reduce the conservatism. Third, to avoid Zeno behavior, a modified state-dependent switching law with dwell time is proposed. It is shown that under the proposed control and switching laws, all the signals of the closed-loop system are bounded and all the state tracking errors can converge to a priori accuracy, even if some subsystems are uncontrollable. Finally, the effectiveness of the proposed method is illustrated through two simulation examples.  相似文献   

6.
In this paper, we study the qualitative properties of linear and nonlinear delay switched systems which have stable and unstable subsystems. First, we prove some inequalities which lead to the switching laws that guarantee: (a) the global exponential stability to linear switched delay systems with stable and unstable subsystems; (b) the local exponential stability of nonlinear switched delay systems with stable and unstable subsystems. In addition, these switching laws indicate that if the total activation time ratio among the stable subsystems, unstable subsystems and time delay is larger than a certain number, the switched systems are exponentially stable for any switching signals under these laws. Some examples are given to illustrate the main results.  相似文献   

7.
This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay.Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality(LMI)approach,mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived.Finally,An example is illustrated to show the applicability and effectiveness of our method.  相似文献   

8.
A novel class of fixed-order, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in nonsmooth Euler–Lagrange, hybrid port-controlled Hamiltonian, and lossless impulsive dynamical systems. These dynamic controllers combine a logical switching architecture with hybrid dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to hybrid closed-loop systems described by impulsive differential equations. Special cases of energy-based hybrid controllers involving state-dependent switching are described, and an illustrative numerical example is given to demonstrate the efficacy of the proposed approach.  相似文献   

9.
The main objective of this paper is to study the stability and stabilization problems for a class of impulsive switched systems with inappropriate impulsive switching signals under asynchronous switching. Here, “inappropriate” means that the impulse jump moment may be inconsistent with the asynchronous switching moment or the system switching moment. And “asynchronous” implies that the switching of controller modes lags behind that of system modes. The hybrid case of stable or unstable subsystems combining with stable and unstable impulses is explored. A novel Lyapunov-like function is constructed, which is discontinuous at some special instants, including the switching instants, the instants when the system modes and filter modes are matched, and the impulse jump instants. Based on the novel multiple Lyapunov-like function, the sufficient conditions for the closed loop system to be globally uniformly exponentially stable (GUES) are obtained with admissible edge-dependent switching signals. Furthermore, by excogitating the state-feedback switching controller, the gain matrix of the controller can be obtained by solving the linear matrix inequalities. Finally, two numerical examples and simulation results are given to prove the effectiveness of our main results.  相似文献   

10.
This contribution extends a numerical method for solving optimal control problems by dynamic programming to a class of hybrid dynamic systems with autonomous as well as controlled switching. The value function of the hybrid control system is calculated based on a full discretization of the state and input spaces. A bound for the error due to discretization is obtained from modeling the error as perturbation of the continuous dynamics and the cost terms. It is shown that the bound approaches zero and that the value function of the discretized variant converges to the value function of the original problem if the discretization parameters go to zero. The performance of a numerical scheme exploiting the discretized system is illustrated for two different examples treated previously in literature.  相似文献   

11.
We investigate the tracking control problem for switched linear time-varying delays systems with stabilizable and unstabilizable subsystems. Sufficient conditions for the solvability of the tracking control problem are developed. The tracking control problem of a switched time-varying delays system with stabilizable and unstabilizable subsystems is solvable if the stabilizable and unstabilizable subsystems satisfy certain conditions and admissible switching law among them. Average dwell time approach and piecewise Lyapunov functional methods are utilized to the stability analysis and controller design. By introducing the integral controllers and free weighting matrix scheme, some restricted assumptions imposing on the switched systems are avoided. A simulation example shows the effectiveness of the proposed method.  相似文献   

12.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

13.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

14.
In the paper, one class of differential systems with nonlinearities satisfying sector constraints is considered. We study the case where some of the sector constraints are given by linear inequalities, and some by nonlinear ones. It is assumed that the coefficients in the system can switch from one set of values to another. Sufficient conditions for the asymptotic and practical stability of the zero solution of the system are investigated using the direct Lyapunov method and the theory of differential inequalities. Restrictions on the switching law that provide a given region of attraction and ultimate bound for solutions of the system are obtained. An approach based on the construction of different differential inequalities for the Lyapunov function in different parts of the phase space is proposed, which makes it possible to improve the results obtained. The results are applied to the analysis of one automatic control system.  相似文献   

15.
Given an unstable hybrid stochastic functional differential equation, how to design a delay feedback controller to make it stable? Some results have been obtained for hybrid systems with finite delay. However, the state of many stochastic differential equations are related to the whole history of the system, so it is necessary to discuss the feedback control of stochastic functional differential equations with infinite delay. On the other hand, in many practical stochastic models, the coefficients of these systems do not satisfy the linear growth condition, but are highly nonlinear. In this paper, the delay feedback controls are designed for a class of infinite delay stochastic systems with highly nonlinear and the influence of switching state.  相似文献   

16.
This work is concerned with several properties of solutions of stochastic differential equations arising from hybrid switching diffusions. The word “hybrid” highlights the coexistence of continuous dynamics and discrete events. The underlying process has two components. One component describes the continuous dynamics, whereas the other is a switching process representing discrete events. One of the main features is the switching component depending on the continuous dynamics. In this paper, weak continuity is proved first. Then continuous and smooth dependence on initial data are demonstrated. In addition, it is shown that certain functions of the solutions verify a system of Kolmogorov's backward differential equations. Moreover, rates of convergence of numerical approximation algorithms are dealt with.  相似文献   

17.
This work defines a new class of hybrid systems called state-based switched (SBS) systems that have numerous important engineering applications. The characterizing feature of these systems is that the discrete-event dynamics are associated with the continuous-time state making a specific function be equal to zero. The choice of this function is application specific and for the closed-loop SBS systems defined in this paper it is related to the execution of a desired set of tasks from a pre-specified mission plan. For this broad class of SBS systems, the paper presents a unified analysis and controller synthesis methodology based on Lyapunov theory. Depending on the details of the mission plan, the closed-loop hybrid system will be divided into two subclasses: sequential and non-sequential. The controller design procedure for both subclasses consists of the same two steps: finding a control law and finding a stabilizing switching rule. For static state and output feedback of sequential hybrid systems, the paper proposes a new hybrid sequential sliding-mode controller. It is proven that the control mission can be accomplished for sequential hybrid systems under static state and output feedback using this new controller. A similar framework is investigated for the more complex class of nonsequential hybrid systems and a systematic procedure for designing the switching rule is presented for some specific instances of these systems.  相似文献   

18.
In this paper we present an algorithmization of the Thomas method for splitting a system of partial differential equations and (possibly) inequalities into triangular subsystems whose Thomas called simple. The splitting algorithm is applicable to systems whose elements are differential polynomials in unknown functions and polynomials in independent variables. Simplicity properties of the subsystems make easier their completion to involution. Our algorithmization uses algebraic Gröbner bases to avoid some unnecessary splittings.  相似文献   

19.
In this paper, the switching dynamics of linear oscillators with arbitrary discontinuous forcing are investigated through the concept of switching systems, and such switching systems consist of countable prescribed linear oscillators with different external excitations. The traditional treatments are to smoothen the discontinuity at switching points of two subsystems in a switching system, which can provide an approximate solution only. Therefore, an alternative method is presented to obtain an exact solution of the resultant switching linear system. Under periodic piecewise forcing and random forcing, the corresponding exact solutions and stochastic responses of switching linear systems are developed. For any periodic forcing, the periodic responses and stability of the resultant system composed of multiple linear oscillators in different time intervals are presented. In addition, the resultant switching system consisting of two oscillators are discussed, and the corresponding stability analysis is carried out.  相似文献   

20.
讨论了有限时区上的最优转换和停止问题,它是一类同时具备脉冲控制和最优停止特征的最优控制问题.问题的最优值以及最优转换和停止决策可以由具有混合障碍的多维反射倒向随机微分方程的解来刻画.接着考虑了形式更一般的反射倒向随机微分方程并证明了方程解的存在唯一性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号