首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.  相似文献   

2.
The submicrometer structure of the temperature-sensitive hydrogels was observed by field emission scanning electron microscopy (FESEM), using synthesized hydrogels of different outer size and shape. The hydrogel structure strongly depends on the homogeneity of the polymer chains during the crosslinking process. A porous structure of the poly(vinyl-methyl-ether) (PVME) bulkgel, synthesized by electron beam irradiation of a concentrated polymer solution, was observed in the swollen state because the phase transitions temperature is acquired through the crosslinking process. Photo-crosslinking reaction of the poly(N-isopropylacrylamide) (PNIPAAm) copolymer in the dry state to form PNIPAAm thin films leads to a rather homogeneous structure. In the shrunk state both gels possess structure being more compact than in the swollen state. We also synthesized PVME and PNIPAAm gels with small outer dimensions in the range of some 100 nm. Heating of the thermo-sensitive polymer in diluted solutions collapses the polymer chains or aggregates. The crosslinking reaction (initiated by electron beam or UV irradiation) of these phase separated structures produces thermo-sensitive microgels. These microgel particles of PVME and PNIPAAm are spherical shape having diameters in the range of 30 - 500 nm.  相似文献   

3.
A method is presented which enables analysis of lignin precipitated on the surface of kraft pulp fibers. As experimental input, high-resolution atomic force microscopy phase images of the fiber surfaces have been recorded in tapping mode. A digital image analysis procedure—based on the watershed algorithm—is applied to distinguish between cellulose fibrils and the precipitated lignin. In this way, size distributions for the diameter of lignin precipitates on pulp fiber surfaces can be obtained. In an initial application of the method, three softwood kraft pulps were analyzed: a black liquor cook with a very high content of precipitated lignin, a bleached pulp where nearly no precipitated lignin is visible and an unbleached industrial pulp. The proposed method is suggested as an appropriate tool to investigate the kinetics of lignin precipitation and the structure of lignin precipitates in pulping and bleaching.  相似文献   

4.
The possibility of using a scanning electron microscope (SEM) for studying the morphology of mechanical polymer blends was investigated. Compounds of SBS/EPDM, and both filled and unfilled NBR/EPDM were tested. OsO4-stained thin-sections were also examined in a transmission electron microscope (TEM) and the results were compared.It seemed to be quite possible to use atomic number contrast detection in combination with OsO4 staining for visualizing the morphology of the blends in SEM. Domains as small as 0·1 μm were clearly seen. This was done by means of a Robinson backscattered electron detector. Sample preparation was easy, 2 mm thick rubber plates were cut on dry ice to obtain a smooth surface. After staining, the samples were coated with a thin conductive carbon layer.The inner structures of SBS and the carbon black particles were not resolved in SEM but were easily seen in TEM.  相似文献   

5.
The aerosol OT/ L-alpha-phosphatidylcholine/isooctane/water system forms a rigid mesophase that transitions from reverse hexagonal to multilamellar in structure at specific water contents. This study shows that characteristics of ordered liquid-crystalline mesophases can be distinguished and imaged in high clarity using cryo-field emission scanning electron microscopy (cryo-FESEM). The reverse hexagonal phase consists of bundles of long cylinders, some with length scales of over 2 microm, that are randomly oriented as part of a larger domain. Cryo-imaging allows the visualization of the intercylinder spacings and the details of transitions from one domain to another. The multilamellar structured mesophase consists of spherical vesicles of 100 nm to 10 microm in diameter, with intervening noncrystalline isotropic regions. Coexistence regions containing both the reverse hexagonal and lamellar structures are also observed in the transition from the reverse hexagonal to the lamellar phase. These results complement and qualitatively verify our earlier studies with small-angle neutron scattering, high-field nuclear magnetic resonance spectroscopy, and freeze-fracture direct imaging transmission electron microscopy. The information is useful in understanding materials templating in these rigid systems.  相似文献   

6.
The focus of this investigation was on orthodontic materials used in the manufacture of dental brackets. The properties of these dental materials are subjected to various physical parameters such as elongation, yield strength and elasticity that justify their application. In turn, these parameters depend on the quantitative elemental concentration distribution (QECD) in the materials used in the manufacture. For compositional analysis, proton-induced X-ray emission (PIXE), backscatter spectrometry (BS) and scanning electron microscopy (SEM) were applied. QECD analysis was performed to correlate the physical parameters with the composition and to quantify imperfections in the materials. PIXE and BS analyses were performed simultaneously with a 3 MeV proton beam while electrons accelerated at 25 keV were used for the SEM analysis. From the QECDs it was observed that: (1) the major elements Cr, Fe and Ni were homogeneously distributed in the orthodontic plate; (2) the distribution of Mo and O correlated with one another; (3) there was a spread of Cr around regions of high C concentration; and, (4) areas of high concentrations of Mo and O corresponded to a decrease in C concentrations. Elemental concentration correlations are shown to indicate the similarities and differences in the ease of formation of phases, based on the tangent of linearity.  相似文献   

7.
Environmental scanning electron microscopy was used to image meniscus formation between an AFM tip and a surface. At high relative humidity, 70%-99%, the meniscus formed is 100 to 1200 nm in height, orders of magnitude larger than predicted by the Kelvin equation using spherical geometry. The height of the meniscus also demonstrates hysteresis associated with increasing or decreasing relative humidity.  相似文献   

8.
We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation of the nanoparticles produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yields measured for single nanoparticles and the surrounding flat surface. For p-polarized, 400 nm (~3.1 eV) femtosecond radiation, a distribution of enhancement factors is found with a large percentage (67%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution are characterized by spherical shapes and relatively smooth silver film morphologies. In contrast, the largest enhancement factors were produced by a small percentage (7%) of particles that displayed silver coating defects that altered the overall particle structure. Comparisons are made between the experimentally measured enhancement factors and previously reported calculations of the localized near-field enhancement for isolated silver nanoparticles.  相似文献   

9.
Ion beam analysis (IBA) techniques were applied successfully to the investigation of non‐corroded and artificially corroded patina layers grown on copper substrates in order to explore their potential use in the study of degradation phenomena of copper and copper alloys subjected to chemical treatment and exposed to selected environmental conditions. Rutherford backscattering spectroscopy (RBS) with deuterons as projectiles and the nuclear reactions 16O(d,p)17O and 32S(p,p′γ)32S were applied to the investigation of the depth distribution of oxygen and sulphur in near‐surface layers of synthetic patina consisting of mineral phases corresponding to chalcanthite as well as to cuprite + chalcanthite and antlerite + brochantite + chalcanthite. Electrochemical techniques (potentiodynamic polarization and cyclic voltammetry in 0.5 M Na2SO4) were used for artificial acceleration and study of the corrosion processes, and scanning electron microscopy (SEM/EDS) was used for examination of the surface morphology of the samples. A patinated roof sample from the Vienna Hofburg also was investigated using the same techniques. The measurement showed that IBA can provide valuable information for the study of patina near‐surface layers of thickness up to a few micrometres and indicated that cuprite was the mineral phase primarily formed on the copper substrates and the main component of the interface between the patina layer and the metallic substrate. The investigated copper patinas looked rather heterogeneous and were characterized by high porosity. Mixed patinas exhibited considerable stability to further corrosive attack. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Summary A method is described for the characterization and the classification according to shape of microscopic objects by automated SEM. The classification is performed by a hierarchical cluster analysis on a set of Fourier coefficients that are calculated from a set of radii, measured between a well defined centroid point and the contour lines of the object. This method is incorporated in existing commercial software for automated X-ray and size analysis of airborne particulate matter (PRC, Tracor Northern). Two examples demonstrate the possibilities and limitations of this method.
Morphologische Charakterisierung mikroskopischer Objekte mit Hilfe der Raster-Elektronenmikroskopie
Zusammenfassung Eine Methode für die Charakterisierung und Klassifizierung mikroskopischer Objekte nach ihrer Form durch automatische Raster-Elektronenmikroskopie wurde beschrieben. Die Klassifizierung wird mittels einer hierarchischen Clusteranalyse unter Verwendung eines Satzes von Fourier-Koeffizienten durchgeführt, die aus einem Satz von Radien — gemessen zwischen einem exakt definierten Mittelpunkt und den Konturlinien der Objekte — berechnet werden. Diese Methode wird in eine kommerziell erhältliche Software für automatische Röntgen- und Größenverteilungs-analyse von luftgetragenen Staubteilchen eingebaut (PRC, Tracor Northern). An Hand von Beispielen werden die Möglichkeiten und Limitierungen dieser Methode dargestellt.
  相似文献   

11.
Verma  Neha  Sharma  Vishal  Kumar  Raj  Sharma  R.  Joshi  M. C.  Umapathy  G. R.  Ohja  Sunil  Chopra  Sundeep 《Analytical and bioanalytical chemistry》2019,411(16):3477-3495
Analytical and Bioanalytical Chemistry - The detection of computer-generated document forgeries has always been a challenging task for forensic document examiners (FDE). With the aim to support the...  相似文献   

12.
The swelling clays have been proposed as engineered barriers in geological disposal systems for waste because these materials are assumed to build a better impermeable zone around wastes by swelling. However, the swelling potential of soils is also considered a prevalent cause of damage to buildings and constructions. For these reasons, it is fundamental to investigate the physicochemical and mechanical behavior of swelling clays. In the current study, the swelling-shrinkage potential (aggregates scale) was estimated using an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program (Visilog). In fact, the isolated aggregates of raw and cation-exchanged bentonite were directly observed at different relative humidities in an ESEM chamber. Then the "Visilog" software was used to estimate the percent augmentation of the aggregate surface as a function of time and as a function of relative humidity. This estimation allows for the calculation of the swelling-shrinkage potential (%) of bentonite. Finally, a kinetic model of first order was tested to fit the kinetic experimental data of swelling-shrinkage potential. The results show that ESEM-DIA coupling can be a powerful method of estimating the swelling-shrinkage potential of expansive clays. In addition, the exponential models fit well with the kinetic experimental data.  相似文献   

13.
A systematic characterization of mono-disperse nanoparticles with nominal diameters of 25 nm, 46 nm, 73 nm, 100 nm, 115 nm, and 250 nm was performed using X-ray standing waves (XSW). The samples were prepared on Si-wafer pieces and analyzed at DELTA synchrotron facility at beamline BL8 under grazing incidence geometry of the primary radiation. Additionally, SEM-EDX inspections of single particles as well as population-density checks were conducted. Particles with smaller diameters were able be characterized by XSW while the larger ones were not completely covered by the interference field produced by the provided 15 keV monochromatic radiation of BL8. The results of the measurements were compared with those of numerical simulations. The extension of the interference field perpendicular to the Si-wafer reflector was determined to be 83 nm ± 4 nm.  相似文献   

14.
The continuous electron beam of conventional scanning electron microscopes (SEM) limits the temporal resolution required for the study of ultrafast dynamics of materials surfaces. Here, we report the development of scanning ultrafast electron microscopy (S-UEM) as a time-resolved method with resolutions in both space and time. The approach is demonstrated in the investigation of the dynamics of semiconducting and metallic materials visualized using secondary-electron images and backscattering electron diffraction patterns. For probing, the electron packet was photogenerated from the sharp field-emitter tip of the microscope with a very low number of electrons in order to suppress space-charge repulsion between electrons and reach the ultrashort temporal resolution, an improvement of orders of magnitude when compared to the traditional beam-blanking method. Moreover, the spatial resolution of SEM is maintained, thus enabling spatiotemporal visualization of surface dynamics following the initiation of change by femtosecond heating or excitation. We discuss capabilities and potential applications of S-UEM in materials and biological science.  相似文献   

15.
Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.  相似文献   

16.
This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.  相似文献   

17.
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.  相似文献   

18.
建立了扫描电镜-能谱法(SEM-EDS)测定生活饮用水中石棉(≥10μm)的方法,使用场发射扫描电镜可对宽度大于0.050~0.124μm的石棉纤维进行定性和计数。若生活饮用水中存在以藻类为主的有机质干扰,使用紫外-过硫酸钾消解可消除相应干扰。配置低、中、高3个浓度的石棉悬浊液模拟水样交由国内不同地区的6家实验室进行方法学验证,结果表明,方法实验室内RSD为10%~37%,实验室间RSD为10%~39%,蓝藻干扰消除实验回收率平均值为98.1%,RSD为11%。方法检出限为5.0×10^4~11.6×10^4个/L,低于GB 5749限量规定的700×10^4个/L。  相似文献   

19.
A technique for measuring the photoionization spectrum and the photoelectron emission threshold of a microscopic structured material is presented. The theoretical underpinning of the experiment and the accuracy of the measurements are discussed. The technique is applied to titanium silicide nanostructures and melanosomes isolated from human hair, human and bovine retinal pigment epithelium cells, and the ink sac of Sepia officinalis. A common photothreshold of 4.5 +/- 0.2 eV is found for this set of melanosomes and is attributed to the photoionization of the eumelanin pigment. The relationship between the photoionization threshold and the electrochemical potential referenced to the normal hydrogen electrode is used to quantify the surface oxidation potential of the melanosome. The developed technique is used to examine the effect of iron chelation on the surface oxidation potential of Sepia melanosomes. The surface oxidation potential is insensitive to bound Fe(III) up to saturation, suggesting that the metal is bound to the interior of the granule. This result is discussed in relation to the age-dependent accumulation of iron in human melanosomes in both the eye and brain.  相似文献   

20.
Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号