首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A hydride generation system using a small concentric hydride generator combined with inductively coupled plasma atomic emission spectrometry (ICP-AES) was established to determine tin, arsenic, bismuth and antimony in a marine sediment material with L-cysteine as a pre-reductant. Influences of concentrations of three kinds of acids (HCl, HNO3 and HClO4), L-cysteine, and sodium tetrahydroborate(III) as well as sodium hydroxide were investigated. The interferences from transition ions were found to be insignificant for determination of the four elements in presence of L-cysteine. Under optimized conditions the detection limits were 0.6 ng/mL for arsenic(III), 0.8 ng/mL for antimony(III), 1.7 ng/mL for tin(IV), and 1.2 ng/mL for bismuth(III). The method was applied to determine the four elements in standard marine sediment materials and the results were in agreement with certified values.  相似文献   

2.
A hydride generation system using a small concentric hydride generator combined with inductively coupled plasma atomic emission spectrometry (ICP-AES) was established to determine tin, arsenic, bismuth and antimony in a marine sediment material with L-cysteine as a pre-reductant. Influences of concentrations of three kinds of acids (HCl, HNO3 and HClO4), L-cysteine, and sodium tetrahydroborate(III) as well as sodium hydroxide were investigated. The interferences from transition ions were found to be insignificant for determination of the four elements in presence of L-cysteine. Under optimized conditions the detection limits were 0.6 ng/mL for arsenic(III), 0.8 ng/mL for antimony(III), 1.7 ng/mL for tin(IV), and 1.2 ng/mL for bismuth(III). The method was applied to determine the four elements in standard marine sediment materials and the results were in agreement with certified values. Received: 4 September 1997 / Revised: 14 October 1997 / Accepted: 7 November 1997  相似文献   

3.
Shraim A  Chiswell B  Olszowy H 《The Analyst》2000,125(5):949-953
Simple and inexpensive methods for the speciation of arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in environmental water samples were developed. In these methods a hydride generation-atomic absorption spectrometry (HG-AAS) technique was employed and perchloric acid (as a reaction medium), L-cysteine (as a pre-reducing agent for a certain contact time between its addition and analysis) and sodium tetrahydroborate(III) (NaBH4, as a reducing agent) were used. The use of L-cysteine greatly enhances the absorption signals of all four arsenic species at low acid concentration (0.001-0.04 M). The methods developed for the determination of total arsenic and total inorganic arsenic and speciation of the four arsenic species in environmental water samples are as follows. (i) DMA: 0.005 M acid and 0.04% NaBH4 in the absence of L-cysteine. DMA can also be speciated in the presence of L-cysteine as follows: 2 M acid, 2.5% L-cysteine after a contact time of approximately 5 min and 0.6% NaBH4. (ii) As(III): 5 M acid and 0.08% NaBH4 in the absence of L-cysteine. (iii) Total inorganic arsenic (As(III) + As(V)]: 8 M acid and 0.6% NaBH4 in the absence of L-cysteine. (iv) Total arsenic: 0.01 M acid, 5% L-cysteine after a contact time of 5 min and 2% NaBH4. (v) MMA: 8 M acid, 3% L-cysteine after a contact time of 50 min and 0.6% NaBH4. (vi) As(V): by difference. Detection limits and recoveries of added spikes for all analyses were found to be 0.5-1.7 ppb and 90-112% respectively.  相似文献   

4.
An improved analytical procedure is presented for the separation and simultaneous determination of hydride-forming (toxic) and not hydride-forming (non-toxic) arsenic species in human urine. Separation was performed by cation-exchange chromatography using a new solid phase type based on the continuous bed chromatography (CBC) technology. This column permits by a factor of 4 higher flow rates than conventional columns resulting in a drastical reduction of retention times without any loss of resolution. Using this type of column, arsenobetaine (AsBet), arsenocholine (AsChol), and dimethylarsinic acid (DMA) were separated from the more toxic arsenic species arsenous acid (As(III)), arsenic acid (As(V)), and methylarsonic acid (MA) within only 4 min. The HPLC system was coupled via a flow injection system and either a UV or a microwave (MW) reactor to the HG-AAS instrument. UV photolysis and MW digestion were used to transform AsBet and AsChol to hydride-forming species and to make them accessible to HG-AAS. UV photolysis turned out to be more suitable for this application than MW digestion, because the latter technique led to peak broadening and poorer performance. The described procedure was applied to the determination of arsenic species in urine samples of non-occupationally exposed persons before and 12 h after seafood consumption. Detection limits were about 1 μg/L for each arsenic species. After consumption, the AsBet and DMA excretion increased by at least a factor of 150 for AsBet and by a factor of 6 for DMA, respectively, while the excretion of the other species did not increase significantly. This invalidates the use of total urinary arsenic as well as total hydride-forming arsenic as an indicator for exposure to inorganic arsenic. Received: 12 August 1998 / Revised: 30 October 1998 / Accepted: 24 November 1998  相似文献   

5.
Chromium speciation implies the quantitative determination of Cr(III) and Cr(VI). However, the presence of hydrolytic forms of Cr(III) and the instability of tracer level Cr(VI) in acid media complicates this speciation. The present work describes the stability of several monomeric Cr(III) species formed in the acid reduction of51Cr(VI). The distribution of Cr(VI) and Cr(X)n(H2O) 6–n (3–n)+ as a function of time was followed by paired cationic and anionic exchange analyses. The distributions and their time dependences are functions of the initial concentrations of both Cr(VI) and acid. The Cr(III) species eventually level to the hexaaquo form.  相似文献   

6.
《Acta Physico》2007,23(7):1013-1017
The kinetics and mechanism of lactic acid oxidation in the presence of Mn(II) and Ce(IV) ions by chromic acid were studied spectrophotometrically. The oxidation of lactic acid by Cr(VI) was found to proceed in two measurable steps, both of which gave pyruvic acid as the primary product in the absence of Mn(II). 2Cr(VI)+2CH3CHOHCOOH → 2CH3COCOOH+Cr(V)+Cr(III) Cr(V)+CH3CHOHCOOH → Cr(III)+CH3COCOOHThe observed kinetics was explained due to the catalytic and inhibitory effects of Mn(II) and Ce(IV) on the lactic acid oxidation by Cr(VI). The reactivity of lactic acid depends upon the experimental conditions. It acts as a two-or three-equivalent reducing agent in the absence or presence of Mn(II). It was examined that Cr(III) products resulting from the direct reduction of Cr(VI) by three-equivalent reducing agents. The oxidation of lactic acid follows the complex order kinetics with respect to [lactic acid]. The activation parameters Ea, ΔH#, and ΔS# were calculated and discussed.  相似文献   

7.
A headspace-single drop microextraction method combined with electrothermal atomic absorption spectrometry (ETAAS) is developed for the extraction and preconcentration of antimony(III) and total antimony into a Pd(II)-containing aqueous drop after hydride generation. Experimental variables such as hydrochloric acid and sodium tetrahydroborate concentrations, sample volume, Pd(II) concentration in the acceptor phase and microextraction time were optimized. A 26-2 IV factorial fractional design was initially used for screening the effect of the variables, followed by an univariate approach. The method showed a great freedom from interferences caused by hydride-forming elements and transition metals. The detection limit of Sb(III) was 25 pg mL?1. A preconcentration factor of 176 is achieved in 3 min. The repeatability, expressed as relative standard deviation, was 4.7%. The method was validated against two certified reference materials (NWRI-TM 27.2 and NIST 2711) and applied to the determination of Sb(III) and total Sb in waters.  相似文献   

8.
Lopez A  Torralba R  Palacios MA  Camara C 《Talanta》1992,39(10):1343-1348
It is shown that the potassium iodide to the samples to reduce As(V) to AS(III) is not essential when total inorganic arsenic is determined by molecular spectrophotometry (trapping AsH(3) in Ag-DDTC) or by atomic-absorption spectrometry (if Ar flow-rate and NaBH(4) addition rate are controlled in 6M hydrochloric acid medium). Furthermore, in the presence of low concentration of organic arsenic, a method is reported for the selective determination of inorganic As(III) and As(V), based on the use of citrate/citric acid medium to determine As(III) and hydrochloric acid to determine total inorganic As. As(V) is determined by the difference between total inorganic As and As(III). The interference level of organic arsenic species (monomethylarsenic acid and dimethylarsenic acid) in the determination of total inorganic arsenic and AS(III) in 6M hydrochloric acid and citrate/citric acid medium respectively, is reported in the text. The developed method is applied to determine As(III) and As(V) in spiked, tap and waste waters and in lake sediments.  相似文献   

9.
A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l−1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l−1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature.  相似文献   

10.
Methods described in literature for the determination of free acid in solutions containing plutonium(IV), uranium(VI) and aluminium(III) were investigated for their applicability in the presence of uranium(IV). Most methods turned out to work in the presence of uranium(IV). The simplest procedure was the suppression of the uranium(IV) hydrolysis by complexation with excess of fluoride. No bias was observed in the presence of 0–30 mg of uranium(IV). A variance of 1.4% resulted from the determination of 0.4 millimole of acid in the presence of 26 mg of uranium(IV) and a variance of 0.26% was obtained when 2 millimoles of acid were determined in the presence of 130 mg of uranium(IV). Uranium(IV) from 30–260 mg in 250 ml caused a negative bias, which can be corrected for. — A concentration of potassium fluoride in the titration medium of 10 g/l turned out to be optimum. In 11/2 years more than 750 determinations were carried out with the same glass electrode and no destruction of the electrode was observed. The influence of uranium(VI), iron(III) and aluminium (III) on the determination of the free acid was also investigated.  相似文献   

11.
Speciation of arsenic in environmental samples gains increasingly importance, as the toxic effects of arsenic are related to its oxidation state. A method was developed for the determination of trace amounts of arsenic (III) and total arsenic by flow injection hydride generation coupled with an in-house made non-dispersive AAS device. The total arsenic is determined after prereduction of arsenic (V) to arsenic (III) with L-cysteine in a low concentration of hydrochloric, acetic or nitric acid. The conditions for the prereduction, hydride generation and atomization were systematically investigated. A quartz tube temperature of 800 degrees C was found to be optimum in view of peak shape and baseline stability. Pb(II), Ni(II), Fe(III), Cu(II), Ag(I), Al(III), Ga(II), Se(IV), Bi(III) were checked for interfering with the 2 microg/L As(V) signal. A serious signal depression was only observed for Se(IV) and Bi(III) at a 150-fold excess. With the above system, arsenic was determined at a sampling frequency of about 1/min with a detection limit (3sigma) of 0.01 microg/L using a 0.5 mL sample. The reagent blank was 0.001+/-0.0003 absorbance units and the standard deviation of 10 measurements of the 2 microg/l As signal was found to be 1.2%. Results obtained for standard reference materials and water samples are in good agreement with the certified values and those obtained by ICP-MS  相似文献   

12.
Iqbal Z  Bjorklund RB 《Talanta》2011,84(4):224-1123
Analysis of water and sand samples was done by reflectance measurements using a mobile phone. The phone's screen served as light source and front view camera as detector. Reflected intensities for white, red, green and blue colors were used to do principal component analysis for classification of several compounds and their concentrations in water. Analyses of colored solutions and colorimetric reactions based on widely available chemicals were performed. Classification of iron(III), chromium(VI) and sodium salt of humic acid was observed using reflected intensities from blue and green light for concentrations 2-10 mg/l. Addition of complex forming sodium salt of ethylenediaminetetraacidic acid enabled the discrimination of Cu(II) ions in the 2-10 mg/l concentration range based on reflection of red light. An alternate method using test strips for copper solutions with the phone as reader also demonstrated a detection limit of 2 mg/l. Analysis of As(III) from 25 to 400 μg/l based on reflection of red light was performed utilizing the bleaching reaction of tincture of iodine containing starch. Enhanced sensitivity to low concentrations of arsenic was obtained by including reflected intensities from white light in the analysis. Model colored sand samples representing discoloration caused by the presence of arsenic in groundwater were analyzed as a complementary method for arsenic detection.  相似文献   

13.
The determination of inorganic arsenic species in ground water matrices using hydride generation coupled online to ICP-AES (HG-ICP-AES) is suggested on the fact that the As(III)-species shows significantly higher signal intensities at low sodium boron hydride (NaBH4) concentrations than the As(V)-species. The sodium boron hydride concentration used for the determination of As(III) without any considerable interferences of As(V) was at 13.2 mmol/L NaBH4 (0.05 wt/v%), whereas the concentration for the total As determination was at 158.4 mmol/L NaBH4 (0.6 wt/v%). The interferences of As(V) during the As(III) measurements were very small: at concentrations below 100 μg/L of total arsenic, the interferences of As(V) were smaller than 2%. An amount of As(III) higher than 10% of the total As amount could be determined exactly and reliably. The total amount of arsenic is measured after reducing the sample with 20 mmol/L L-cysteine (C3H7NO2S). Finally, the amount of the As(V)-species is calculated by the difference between the As(III)-species and the total arsenic. Therefore, this analytical method requires the absence of organic arsenic species, but if they still appear, they could be frozen out with liquid nitrogen after the hydride generation system. The linearity of calibration reaches from 2 μg/L up to 1000 μg/L with a detection limit routinely of about 1 μg/L for each species. The advantages of this method in comparison to AAS measurements are the higher extent of the linear calibration range (3 orders of magnitude) and a higher sensitivity. Additional merits of the method developed are easy handling and high sampling rates.  相似文献   

14.
Recent regulation in Japan requires more sensitive trace analysis methods for the determination of arsenic and selenium and their oxidation states As(III) and (V), Se(IV) and (VI). The hydride generation (HG) technique is usually used in combination with AAS and ICP-AES to increase sensitivity. However, hydrochloric acid is mostly used to acidify the sample solution in HG. Isobaric interferences due to chlorine-related species cause mass spectral problems when the same solution is used for the determination of these elements by ICP-MS. In this study, different oxidation states of As and Se were determined by coupling ion chromatography (IC) to an ICP-AES instrument. An HG technique was used to introduce test samples into the ICP. Nitric acid was employed to acidify the samples for HG. The concentrations of acid and base were kept as low as possible to reduce contamination. The formation of As and Se hydrides could be achieved without HCl, if the concentrations of acid and alkaline solutions were optimized. However, HCl was necessary for additional reduction of Se(VI) to Se(IV).  相似文献   

15.
Recent regulation in Japan requires more sensitive trace analysis methods for the determination of arsenic and selenium and their oxidation states As(III) and (V), Se(IV) and (VI). The hydride generation (HG) technique is usually used in combination with AAS and ICP-AES to increase sensitivity. However, hydrochloric acid is mostly used to acidify the sample solution in HG. Isobaric interferences due to chlorine-related species cause mass spectral problems when the same solution is used for the determination of these elements by ICP-MS. In this study, different oxidation states of As and Se were determined by coupling ion chromatography (IC) to an ICP-AES instrument. An HG technique was used to introduce test samples into the ICP. Nitric acid was employed to acidify the samples for HG. The concentrations of acid and base were kept as low as possible to reduce contamination. The formation of As and Se hydrides could be achieved without HCl, if the concentrations of acid and alkaline solutions were optimized. However, HCl was necessary for additional reduction of Se(VI) to Se(IV).  相似文献   

16.
Hemmings MJ  Jones EA 《Talanta》1991,38(2):151-155
Arsenic(V) and arsenic(III) can be separated, by ion-exclusion chromatography, in solutions containing iron and sulphuric acid. Iron is removed by ion-exchange before the speciation of arsenic, with phosphoric acid as the eluent. The separated arsenic(V) and arsenic(III) are measured spectrophotometrically in the ultraviolet region at a wavelength of 195 mn. Arsenic(V) and arsenic(III) can be determined at concentrations > or = 3 mg/1. The relative standard deviations are 1.3% for arsenic(V) and 0.9% for arsenic(III), at the 10 mg/1. level. The time required for the separation of the inorganic arsenic species is 11 min.  相似文献   

17.
A voltammetric procedure in the flow system for determination of traces of Cr(VI) in the presence of Cr(III) and humic acid is presented. The calibration graph is linear from 5×10−10 to 1×10−7 mol l−1 for an accumulation time of 120 s. The R.S.D. for 1×10−8 mol l−1 Cr(VI) is 5.3% (n=5). The detection limit estimated from 3σ for a low concentration of Cr(VI) and accumulation time of 120 s is 2×10−10 mol l−1. The method can be used for Cr(VI) determination in the presence of up to 50 mg l−1 of humic acid. The validation of the method was carried out by studying the recovery of Cr(VI) from spiked river water and by the comparison of the results of determination of Cr(VI) in a soil sample. The method cannot be used for analysis of samples containing high concentrations of chloride ions such as seawater and estuarine water.  相似文献   

18.
The speciation of chromium and arsenic in their two common oxidation states is determined by the use of selective preconcentration and energy-dispersive x-ray spectrometry. Chromium(VI) and arsenic(III) are recovered by precipitation with dibenzyldithiocarbamate and filtration. Chromium(III) and arsenic(V) are determined in the filtrate by coprecipitation with hydrated iron(III) oxide. The chromium and arsenic content of each precipitate is determined by use of x-ray spectrometry.  相似文献   

19.
This study aimed to establish complementary high performance liquid chromatography (HPLC) methods including three modes of separation: ion pairing, cation exchange, and anion exchange chromatography, with detection by inductively coupled plasma mass spectrometry (ICPMS). The ion pairing mode enabled the separation of inorganic arsenate (As(V)), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V)). However, the ion pair mode was unable to differentiate inorganic arsenite (As(III)) from arsenobetaine (AsB); instead, cation exchange chromatography was used to isolate and quantify AsB. Anion exchange chromatography was able to speciate all of the aforementioned arsenic species. Potential inaccurate quantification problem with urine sample containing elevated concentration of AsB, which eluted immediately after As(III) in anion exchange or ion pairing mode, was overcame by introducing a post-column hydride generation (HG) derivatization step. Incorporating HG between HPLC and ICPMS improved sensitivity and specificity by differentiating AsB from hydride-forming arsenic species. This paper emphasizes the usefulness of complementary chromatographic separations in combination with HG-ICPMS to quantitatively determine concentrations of As(III), DMA(V), MMA(V), As(V), and AsB in the sub-microgram per liter range in human urine.  相似文献   

20.
Diffuse reflectance spectroscopy has been used for the study of the sorption of malonate and glycolate complexes of uranium(VI) and iron(III), present simultaneously in solution, onto the solid phase of fiber materials filled with an AB-17 anion exchanger. In the form of malonate complexes uranium(VI) is determined in 0.5 M HCl on substrate discs with immobilized Arsenazo III, while iron(III) is determined on substrate discs with potassium thiocyanate in 0.5 M HCl. The dependence of the analytical signals on the concentrations of U(VI) and Fe(III) is linear in the ranges 0.02–0.16 μg/mL; the detection limit is 0.01 μg/mL. The possibility of analysis of U(VI) and Fe(III) mixtures in ratio from 1: 5 to 5: 1 in the presence of 2-fold concentrations of Zr(IV), Th(IV), and Ti(IV), 5-fold concentrations of Bi(III), 10-fold concentrations of Cu(II), 20-fold concentrations of La(III), 100-fold concentrations of Ni(II) and Zn(II), and 200-fold concentrations of Co(II) and Ca(II) has been demonstrated. Standard color scales in the concentration range from 0.02 to 0.2 μg/mL have been used for the visual determination of uranium(VI) and iron(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号