首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly specific molecular recognition of a twisted hexaporphyrin complex, tris[5,5'-bis[5,10,15-tris[methoxy(ethoxy)(2)carbonylethyl]porphyrinatozinc(II)]-2,2'-bipyridine]ruthenium(II) chloride (2), is described. Complex 2 has two trisporphyrin binding sites and can bind two triamines, tris(2-aminoethyl)amine (3) (K(1) = 3.0 x 10(8) M(-1), K(2) = 3.0 x 10(7) M(-1)), 1,1,1-tris(aminomethyl)ethane (4) (K(1) = 2.0 x 10(7) M(-1), K(2) = 1.4 x 10(6) M(-1)), tris(3-aminopropyl)amine (5) (K(1) = 3.5 x 10(6) M(-1), K(2) = 6.0 x 10(6) M(-1)), and 1,3,5-tris(aminomethyl)benzene (6) (K(1) = 2.9 x 10(6) M(-1), K(2) = 1.2 x 10(6) M(-1)), strongly with its torsional motion. The 1:2 complex between 2 and the best fit triamine 3 showed the nature of the specific rigid structure in the UV-vis, fluorescence, and (1)H NMR spectra and isothermal titration calorimetry (ITC) measurements.  相似文献   

2.
Zhao Z  Pei J  Zhang X  Zhou X 《Talanta》1990,37(10):1007-1010
A differential pulse stripping voltammetry method for the trace determination of molybdenum(VI) in water and soil has been developed. In 0.048M oxalic acid and 6 x 10(-5)M Toluidine Blue (pH 1.8) solution, Mo(V), the reduction product of Mo(VI) in the sample solution, can form a ternary complex, which can be concentrated by adsorption on a static mercury drop electrode at -0.1 V (vs. Ag/AgCl). The adsorbed complex gives a well-defined cathodic stripping current peak at -0.30 V, which can be used for determining Mo(VI) in the range 5 x 10(-10)-7 x 10(-9)M, with a detection limit of 1 x 10(-10)M (4 min accumulation). The method is also selective. Most of the common ions do not interfere but Sn(IV) and large amounts of Cu(2+), Ag(+) and Au(3+) affect the determination.  相似文献   

3.
Two sensitive, precise spectrophotometric methods for the determination of rhodium with malachite green are proposed. The anionic rhodium complex with tin(II) chloride yields an ion associate with malachite green; on shaking the solution (in 6.5 M HCl) with benzene, the sparingly soluble ion associate (rhodium: malachite green =1:2) precipitates at the phase boundary. The precipitate is dissolved in a mixture of acetone and water (3 + 1). The molar absorptivity is 1.44 × 105 l moll-1 cm-1 at 627 nm. When test solutions (0.65 M HCl) are shaken with diisopropyl ether, an ion associate of a different composition is formed (rhodium :malachite green = 1:5) and the molar absorptivity is 3.4 × 105 l mol-1 cm-1. Platinum, palladium and iridium interfere except in small amounts.  相似文献   

4.
The H/D exchange reaction and the rotational dynamics of heavy water (D2O) are studied at 50 degrees C in the ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), in the [D2O] range of 3-55 M. The initial H/D exchange rates are observed as 1.0 x 10(-7), 4.5 x 10(-6), 1.0 x 10(-5), 4.1 x 10(-5), 1.1 x 10(-4), and 3.7 x 10(-4) s(-1), respectively, at [D2O] of 2.8, 7.1, 8.1, 11, 15, and 25 M. The rate is very slow and less than 10(-5) s(-1) at [D2O] below approximately 7 M. It steeply increases to the order of 10(-4)s(-1) for 7 M < [D2O] < 10 M, and linearly increases with [D2O] in the more water-rich region. The intercept of the linear region at [D2O] = approximately 9 M is interpreted by considering that each chloride anion deactivates 1.6 equiv water molecules due to the strong solvation. Correspondingly, the rotational correlation time of D2O at [D2O] < 7 M is 1 order of magnitude larger than that in water-rich conditions.  相似文献   

5.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

6.
A sensitive adsorptive stripping voltammetric method for the determination of dinitrophenolic herbicides, dinoseb (DSB) and dinoterb (DTB) at a bare carbon paste electrode (CPE) and a clay modified carbon paste electrode (CMCPE) was developed. A systematic study of various experimental conditions, such as the pH, accumulation variables and composition of a modifier on the adsorptive stripping response, were examined by using differential pulse voltammetry. A significant improvement was observed in the sensitivity by using the present method with CMCPE. When CMCPE was used, a linear response was obtained over the concentration range 2 x 10(-10) to 3 x 10(-7) M and 6 x 10(-10) to 6 x 10(-7) M with lower detection limits of 1 x 10(-10) M and 5.4 x 10(-10) M for dinoseb and dinoterb, respectively, at an accumulation time of 100 s. The interference from other herbicides and ions on the stripping signals of both compounds was also evaluated. The described method was applied to estimate of the dinoseb and dinoterb in environmental samples.  相似文献   

7.
Cyclic voltammetry and differential pulse voltammetry were used to explore the adsorption behavior of three antibacterial agents at a carbon paste electrode. The drugs were accumulated on a carbon paste electrode, and a well-defined oxidation peak was obtained in acetate buffer (pH 5.0). The adsorptive stripping response was evaluated as a function of some variables such as the scan rate, pH and accumulation time. A simple, precise, inexpensive and sensitive voltammetric method has been developed for the determination of the cited drugs (Lomefloxacin (LFX), Sparfloxacin hydrochloride (SFX), and Gatifloxacin (GFX)). A linear calibration was obtained from 2 x 10(-7) M to 4 x 10(-5) M for LFX, 2 x 10(-7) M to 6 x 10(-5) M for SFX, and GFX. The limits of detection (LOD) were 4.2 x 10(-7), 7 x 10(-7) and 6.6 x 10(-7) M, while the limits of quantification (LOQ) were 1.4 x 10(-6), 2.3 x 10(-6) and 2.2 x 10(-6) M for LFX, SFX, and GFX, respectively. The R. S. D. of five measurements at the 1 x 10(-6) M level were 0.4, 0.5 and 0.3 for LFX, SFX and GFX, respectively. The method was applied to the determination of LFX, SFX and GFX in dilute urine samples and dosage forms, and compared with the HPLC method.  相似文献   

8.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

9.
Bi S  Wang X  Ye L  Gan N  Zou G  Liang H  Dai L  Cao M  Chen Y 《Talanta》1999,50(5):1011-1017
The determination of trace levels of aluminum in natural waters with rubeanic acid (RA) by adsorption chronopotentiometry is developed in this paper. Optimum experimental conditions include an accumulation potential of -0.40 V, accumulation time of 60 s, and a RA concentration of 6x10(-6) M in 0.2 M NaAc-HAc buffer solution (pH 4.6). The response is linear over the 1x10(-8) approximately 4x10(-7) M concentration range. The detection limit is 5.6x10(-9) M and the relative S.D. (at the 3x10(-7) M level) is 2.6%. Possible interferences are evaluated. The method has been applied to the determination of trace levels of Al in various real samples. Direct determination of toxic forms of Al in surface waters by this technique is also explored.  相似文献   

10.
张光  张振义 《化学学报》1991,49(10):993-997
本文建立了利用Rh(III)-5-Br-TAMB-CP配合物吸附波体系测定铑的电化学分析方法。研究了该体系吸附波的性质及阳离子表面活性剂CPC在体系中的作用机理。该方法灵敏度高, 选择性好, 可用于催化剂中铑的测定。  相似文献   

11.
Opydo J 《Talanta》1997,44(6):1081-1086
This paper presents a method of determination of aluminium in tree samples (wood, leaves, roots) based on the cathodic adsorptive stripping voltammetry. Al(III) complexed with alizarin S was determined by ASV method using a hanging mercury drop electrode. Optimal conditions were found to be: accumulation time 30-90 s, accumulation potential - 0.70 V versus SCE, supporting electrolyte 0.1 M ammonia-ammonium chloride buffer at pH 8.2 and concentration of alizarin 1 x 10(-5) M. The response of the system, a linear current-concentration relationship was observed up to 8 x 10(-6) M. The developed method has been tested by analysing international reference materials (BCR 62 Olive leaves and BCR 101 spruce needles).  相似文献   

12.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

13.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

14.
Setiadji R  Wang J  Santana-Rios G 《Talanta》1993,40(6):845-849
A sensitive stripping voltammetric procedure for trace measurement of thorium, based on the catalytic-adsorptive peak of the thorium-cupferron complex, is reported. Optimal experimental conditions include the use of 1mM BES buffer solution (pH 5.5), containing 20muM cupferron, an accumulation potential of -0.80 V (vs. Ag/AgCl), and a differential pulse potential scan. The resulting stripping procedure offers improved sensitivity over a previous stripping scheme for thorium. The limit of detection after 5 min preconcentration is 50 ng/l. (2 x 10(-10)M), the response is linear up to 8 x 10(-8)M, and the relative standard deviation at the 2.1 x 10(-8)M level is 4.4%. Possible interferences are evaluated.  相似文献   

15.
Puri BK  Gautam M 《Talanta》1978,25(8):484-485
Conditions have been developed for the extraction of chromium(III) and rhodium(III) as their 8-hydroxyquinolinates into molten naphthalene. The naphthalene is allowed to solidify, separated by filtration, dried with filter paper and dissolved in chloroform. The solution is diluted to 10 ml and its absorbance measured at 410 nm for chromium and 425 nm for rhodium, against a reagent blank. In both cases the solution is stable for 24-36 hr. Beer's law is obeyed over the range of 2.7-48.6 mug of chromium or 2.7-57.5 mug of rhodium in 10 ml of the chloroform solution. The molar absorptivity is 3 x 10(3) l. mole(-1) . cm(-1) for chromium and 3.6 x 10(4) for rhodium. Solutions containing 27.0 mug of chromium or 10.95 mug of rhodium give a mean absorbance of 0.140 and 0.395 respectively, with standard deviations of 0.002(2) and 0.004(7). Most metal ions that form oxinates may interfere, but can be removed beforehand by normal liquid-liquid extraction.  相似文献   

16.
Zhang F  Bi S  Zhang J  Bian N  Liu F  Yang Y 《The Analyst》2000,125(7):1299-1302
The differential pulse voltammetric (DPV) indirect determination of aluminium using L-dopa under alkaline conditions on a glassy carbon working electrode was studied. The proposed method relies on the linear decrease of the DPV anodic peak current of L-dopa with increase in the concentration of aluminium added. Under the optimum experimental conditions (pH 8.5, 0.08 M NH4Cl-NH3.H2O buffer solution, and 4 x 10(-4) M L-dopa), the linear range is 2-18 x 10(-7) M AlIII. The detection limit is 7.6 x 10(-8) M and the relative standard deviation for 8 x 10(-7) M AlIII is 3.5% (n = 8). A number of foreign species were examined as potential interferents. The method was applied to the determination of aluminium in drinking waters, synthetic renal dialysate, sodium chloride injection, sucrafate, hydrothorax, blood, urine and hair samples. The physiological significance is discussed.  相似文献   

17.
J N Li  J Zhang  P H Deng  J J Fei 《The Analyst》2001,126(11):2032-2035
A very sensitive and selective procedure was developed for trace measurement of zirconium based on the cathodic adsorptive stripping voltammetry of the zirconium-alizarin red S(ARS) complex at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the zirconium-ARS complex were recorded by a model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). Optimal analytical conditions were found to be: an acetic acid (0.1 mol l(-1))-potassium biphthalate (0.08 mol l(-1)) buffer solution (pH 4.8) containing 4.0 x 10-6 mol l(-1) ARS; accumulation potential, 0.0 V; accumulation time, 180 or 90 s; rest time, 10 s; scan rate, 250 mV s(-1). The results showed that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.51 V, corresponding to the reduction of ARS in the complex at the electrode. The detection limit was found to be 1.0 x 10(-10) mol l(-1) (S/N = 3) for 240 s accumulation. The linear range was 2.0 x 10(-10)-4.0 x 10(-7) mol l(-1). The developed method was applied to the determination of trace zirconium in the ore samples with satisfactory results.  相似文献   

18.
Wang J  Zadeii JM 《Talanta》1987,34(2):247-251
The chelate of uranium with the azo dye Mordant Blue 9 is shown to be adsorbed and then reduced on the hanging mercury drop electrode. These properties have been exploited in developing a highly sensitive stripping voltammetric procedure for trace determination of uranium. With controlled adsorptive accumulation for 5 min, a detection limit near 2 x 10(-10)M uranium is obtained. Cyclic voltammetry has been used to characterize the interfacial and redox behaviour. The effect of various operational parameters on the stripping response is discussed. Experimental conditions include use of 1 x 10(-6)M Mordant Blue 9 in 0.05M acetate buffer (pH 6.5), an accumulation potential of -0.43 V, and a linear potential scan. The response is linear up to 1.2 x 10(-7)M uranium, and the relative standard deviation at 4.2 x 10(-8)M is 3.2%. The effects of possible interferences from organic surfactants or metal ions have been investigated.  相似文献   

19.
Poe DP  Eppen AD  Whoolery SP 《Talanta》1980,27(4):368-370
4-Hydroxy-1,10-phenanthroline forms a stable tris-chelate with iron(II) in the range of alkalinity from pH 10 to 2M sodium hydroxide, with molar absorptivity 1.19 x 10(4) l.mole(-1).cm(-1) at 545 nm. The determination of iron is performed by adding the phenanthroline, stannous chloride, and iron-free sodium hydroxide to the sample to give pH > 13; stannite is the active reductant. Beer's law is obeyed over the iron concentration range from 1 x 10(-5) to 8 x 10(-5)M. Advantages over existing methods are the use of stannous chloride instead of sodium dithionite, which avoids the problem of turbidity, and the stability of the iron(II) chelate towards oxidation by air. The conditional reduction potential at pH 11 for the iron(III)/iron(II) complex couple is 0.39 V.  相似文献   

20.
Susceptibility of the HT-29 human colon adenocarcinoma cell line and human myeloid leukemia cell line U937 to hypericin-mediated photocytotoxicity was investigated and compared in this study. Cellular parameters as viability, cell number, metabolic activity and total protein amount were monitored in screening experiments with subsequent cell-cycle analysis and apoptosis detection to determine the cellular response of the different tumor types to various concentrations of photoactivated hypericin. The results show concentration dependence of the photosensitizer's cytotoxicity on the studied cell lines, with higher sensitivity of U937 cells. Whereas the two extreme hypericin concentrations (1 x 10(-9) M and 1 x 10(-6) M) resulted in similar changes in all tested cellular parameters on the two studied cell lines, 1 x 10(-8) M and 1 x 10(-7) M hypericin treatment resulted in different responses of the cell lines in all monitored parameters except for viability. Although leukemic cells proved sensitive to both 1 x 10(-8) M and 1 x 10(-7) M hypericin, significant changes on HT-29 cells were detected only after the 1 x 10(-7) M hypericin concentration. Cell-cycle arrest was related to simultaneously occurring apoptosis in colon cancer. Remarkable is the difference in cell-cycle profile where G2/M arrest in colon cancer cells versus accumulation of leukemic cells in the S phase appears. This suggests that hypericin treatment affecting the cell-cycle machinery of different cancer cells is not universal in effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号