首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A technical modification of the traditional method of decomposition of carbonates in phosphoric acid was proposed for the determination of δ13C and δ18O in organogenic carbonate samples weighing 10–30 μg with an accuracy of 0.05%. The extraction of CO2 was carried out under a vacuum at 95°C in 105% phosphoric acid. The isotopic composition of CO2 was measured by CG-IRMS. The used feed-motion of samples to the reactor provides a consecutive delivery of the samples from the sample holders to the acid. This sample feeding method prevents the contamination of the acid with impurities from the surface of the sample, obviates the necessity of removing the sample holders from the acid, and allows the use of the same acid for performing a very large numbers of analyses. The accuracy and reproducibility of the δ13C and δ18O values was estimated by measuring international standards and comparing with the δ13C and δ18O values for organogenic carbonate samples obtained by the proposed method of analysis at a microgram level and the traditional method at a milligram level. The proposed technology was successfully used to study the isotopic composition of oxygen and carbon in the plankton and benthos foraminifers in order to reconstruct the Okhotsk Sea palaeotemperatures.  相似文献   

2.
A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments.  相似文献   

3.
BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4 under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
8.
9.
The most widely used method for pyrolysing samples for hydrogen or oxygen isotopic analysis involves heating them to greater than 1300 degrees C in a helium stream passed through a glassy carbon tube in an alumina casing. There are a number of difficulties with this. Glassy carbon tubes are expensive and interaction between the carbon tube and the outer casing produces unwanted carbon monoxide by reduction of the alumina at high temperatures. The latter effect is overwhelming if temperatures of 1400 degrees C or greater are used for pyrolysis. We experimented with lining alumina casings with pure molybdenum sheet. It is relatively cheap, conforms well to the interior of the reactor tube (to avoid carrier and sample bypassing of the carbon pack), resists high temperatures and neither oxidises excessively nor absorbs the gases. The main disadvantages are that silver sample cups must be used and that the molybdenum degrades over time by formation of the carbide. We can maintain sharp peaks, high precision and good accuracy over more than 700 solid samples for both hydrogen and oxygen. The reactors last longer for water injections. The molybdenum in the columns does not contribute greatly to memory effects. The precision of analysis is dependent on other factors as well as the pyrolysis column, but for oxygen we typically achieve approximately <0.2 per thousand (sucrose), <0.25 per thousand (water) and <0.25 per thousand (leaf), sometimes using only a linear correction of drift, after dividing the run into 1 to 3 segments.  相似文献   

10.
A new method to seal water in silver tubes for use in a TC/EA (thermal conversion/elemental analyzer) reduction unit using a semi‐automated sealing apparatus can yield reproducibilities (1 standard deviation) of δ2H and δ18O measurements of 1.0‰ and 0.06‰, respectively. These silver tubes containing reference waters may be preferred for the calibration of H‐ and O‐bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer‐controlled stepping motor to produce silver tubes identical in length. The reproducibility of the mass of water sealed in tubes (in a range of 200–400 µg) can be as good as 1%. Approximately 99% of the sealed silver tubes are satisfactory (leak free). Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110°C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all the water will be lost. The tubes should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but users of this method are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blanks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A semi-preparative normal-phase high-performance liquid chromatography-mass spectrometry (HPLC-MS) method is presented for the purification of various alcohol fractions from total lipid extracts derived from sediments, for the purpose of hydrogen isotopic measurement by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). 4-methylsterols, including the dinoflagellate-specific marker dinosterol (4,23,24-trimethylcholestan-22-en-3beta-ol), were successfully separated from notoriously co-eluting plant-derived pentacyclic triterpenoid alcohols and alkyl alcohols. We find that substantial hydrogen isotope fractionation occurs during chromatographic separation, demonstrating the importance of recovering the entire peak when subsequent hydrogen isotope analyses are to be performed. This is the first report of such hydrogen isotopic fractionation for a natural unlabelled compound.  相似文献   

12.
The synthesis of hydrogen peroxide from carbon monoxide, water and oxygen in a biphasic system using palladium complexes with bidentate nitrogen ligands as catalysts was investigated. After testing a series of phenanthroline derivatives, 2,9-dimethyl-4,7-diphenylphenanthroline (8) was selected as the most efficient ligand. The palladium complex with ligand 8 showed high stability and catalytic activity (turnover number up to 600 moles of hydrogen peroxide per mole of palladium per hour) and, on the basis of a preliminary study, carried out in continuous operation mode, it appears a promising catalyst for the development of an industrial process.  相似文献   

13.
Organic sulphur compounds (thiosemicarbazide and dithioxamide) are determined in the range 5.00–30.0 μg ml?1. Electrolysis is done between two platinum electrodes in a closed vapour-generation system. Various parameters which affect the procedure are investigated in detail. Other sulphur-containing compounds can be determined with different sensitivities.  相似文献   

14.
Isotopic measurements of leaf water have provided insights into a range of ecophysiological and biogeochemical processes, but require an extraction step which often constitutes the major analytical bottleneck in large-scale studies. Current standard procedures for leaf water analysis are based on cryogenic vacuum or azeotrophic distillation, and are laborious, require sophisticated distillation lines and the use of toxic materials. We report a rapid technique based on centrifugation/filtration of leaf samples pulverised in their original sampling tubes, using a specifically adapted, simple apparatus. The leaf water extracts produced are suitable for isotopic analysis via pyrolysis gas chromatography isotope ratio mass spectrometry (PYR/GC/IRMS). The new method was validated against cryogenic vacuum distillation and showed an overall accuracy of +/-0.5 per thousand (nine grouped comparisons, n = 110) over a range of 21 per thousand. Effects due to the presence of soluble carbohydrates were near the detection limits for most samples analysed, and these effects could be corrected for (the extracted soluble organics could also be used for isotopic analysis). The extraction time for a routine eight-sample subset was reduced from 4 h (cryogenic distillation) to 45 min, limited only by the size of the centrifuge(s) used. This method provides a rapid, low-cost and reliable alternative to conventional vacuum and other distillation methods that can alleviate current restrictions on ecosystem- and global-scale studies that require high-throughput leaf water isotopic analysis. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A reactor for converting cellulose into carbon monoxide for subsequent oxygen isotopic analysis via continuous flow isotope ratio mass spectrometry is described. The system employs an induction heater to produce temperatures >or=1500 degrees C within a molybdenum foil crucible positioned by boron nitride (BN) spacers within a quartz outer sleeve. For samples of a homogeneous working standard cellulose between 300 and 400 microg in size, the blank/signal ratio is <5%, and the long-term precision is 0.30 per thousand (N = 232). For samples of 30 to 100 microg in size, a gas pressure sintered silicon nitride (Si(3)N(4)) outer sleeve replaces the quartz sleeve, the BN spacers are not used, and 6.0-grade carrier He must be used to minimize the blank signal. With these modifications a blank/sample ratio of <5% and long-term precision of 0.30 per thousand (N = 144) are obtained. These results are similar to those achieved using standard high-temperature furnaces, but the reactor is simpler to pack, the system is more economical to run, and samples as small as 30 microg cellulose may be measured. For both reactors memory is significant in the subsequent sample and is believed to be due to exchange with reactor oxygen at temperatures above 1000 degrees C. Further applications might include online preparation of other materials requiring temperatures of 1500-2600 degrees C.  相似文献   

17.
Novel amorphous Ni–B catalysts supported on alumina have been developed for the production of hydrogen peroxide from carbon monoxide, water and oxygen. The experimental investigation confirmed that the promoter/Ni ratio and the preparation conditions have a significant effect on the activity and lifetime of the catalyst. Among all the catalysts tested, the Ni–La–B/γ-Al2O3 catalyst with a 1:15 atomic ratio of La/Ni, dried at 120 °C, shows the best activity and lifetime for the production of hydrogen peroxide. The deactivation of the alumina-supported Ni–B amorphous catalyst was also studied. According to the characterizations of the fresh and used catalysts by SEM, XRD and XPS, no sintering of the active component and crystallization of the amorphous species were observed. However, it is water poisoning that leads to the deactivation of the catalyst. The catalyst characterization demonstrated that the active component had changed (i.e., amorphous NiO to amorphous Ni(OH)2) and then salt was formed in the reaction conditions. Water promoted the deactivation because the surface transformation of the active Ni species was accelerated by forming Ni(OH)2 in the presence of water. The formed Ni(OH)2 would partially change to Ni3(PO4)2.  相似文献   

18.
A miniaturized sample preparation technique that uses a fine-fiber-packed needle as the extraction medium is reviewed, especially in relation to its application to the analysis of volatile organic compounds by gas chromatography. When the needle was packed longitudinally with a bundle of fine filaments (12 μm o.d.) which were also surface-coated with polymeric materials, successful sample preconcentration was obtained. Improved sensitivity was also established by introducing simultaneous derivatization reactions into the extraction process in the fiber-packed needle. The storage performance of the needle clearly demonstrated the potential of the technique for typical on-site sampling during environmental analysis. In this short review, the fiber-packed extraction needle developed by the authors is summarized along with applications that use the fiber-packed needle as a miniaturized extraction device.  相似文献   

19.
We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H2) in an air sample. This method improves previous methods to attain simpler and lower‐cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H2 purification from the air matrix via automatic multi‐step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H2 can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H2, such as H2 in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H2 analyses, we report here the isotope fractionations during H2 uptake by soils in a static chamber. The δD values of H2 in these H2‐depleted environments can be useful in constraining the budgets of atmospheric H2 by applying an isotope mass balance model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Techniques have been developed to allow on-line simultaneous analysis of concentration and stable isotopic compositions ((13)C and (18)O) of dissolved carbon monoxide (CO) in natural water, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The analytical system consisted sequentially of a He-sparging bottle of water, a gas dryer, CO(2)-trapping stage using both Ascarite trap and silica-gel packed gas chromatography (GC), on-line oxidation to CO(2) using the Schütze reagent, cryofocusing, GC purification using a capillary column and measurement by CF-IRMS. Each sample analysis takes about 40 minutes. The detection limit with delta(13)C standard deviation of 0.5 per thousand is 300 pmol and that with delta(18)O deviation of 1.0 per thousand is 750 pmol. Analytical blanks associated with these methods are 21+/-9 pmol. The procedures are evaluated through analyses of temporally varying concentration and isotopic compositions of CO in an artificial lake on the university campus. The delta(13)C and delta(18)O values of CO showed wide variation in accordance with diurnal variation of CO concentration, probably due to significant isotopic effects during photochemical production and microbial oxidation of CO in the aquatic environment. The delta(13)C and delta(18)O values of CO should be a useful tool in studies of the mechanism and pathways of CO production and consumption in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号