首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The focus of this study is on the identification of precursors in solution that might act as building blocks when solid uranyl(vi) poly-peroxometallate clusters containing peroxide and hydroxide bridges are formed. The precursors could be identified by using carbonate as an auxiliary ligand that prevented the formation of large clusters, such as the ones found in solids of fullerene type. Using data from potentiometric and NMR ((17)O and (13)C) experiments we identified the following complexes and determined their equilibrium constants: (UO(2))(2)(O(2))(CO(3))(4)(6-), UO(2)(O(2))CO(3)(2-), UO(2)(O(2))(CO(3))(2)(4-), (UO(2))(2)(O(2))(CO(3))(2)(2-), (UO(2))(2)(O(2))(2)(CO(3))(2-) and [UO(2)(O(2))(CO(3))](5)(10-). The NMR spectra of the pentamer show that all uranyl and carbonate sites are equivalent, which is only consistent with a ring structure built from uranyl units linked by peroxide bridges with the carbonate coordinated "outside" the ring; this proposed structure is very similar to [UO(2)(O(2))(oxalate)](5)(10-) identified by Burns et al. (J. Am. Chem. Soc., 2009, 131, 16648; Inorg. Chem., 2012, 51, 2403) in K(10)[UO(2)(O(2))(oxalate)](5)·(H(2)O)(13); similar ring structures where oxalate or carbonate has been replaced by hydroxide are important structure elements in solid poly-peroxometallate complexes. The equivalent uranyl sites in (UO(2))(2)(O(2))(2)(CO(3))(2-) suggest that the uranyl-units are linked by the carbonate ion and not by peroxide.  相似文献   

2.
Using density functional theory (DFT) calculations, we revisited a classical problem of uranyl(VI) oxalate photochemical decomposition. Photoreactivities of uranyl(VI) oxalate complexes are found to correlate largely with ligand-structural arrangements. Importantly, the intramolecular photochemical reaction is inhibited when oxalate is bound to uranium exclusively in chelate binding mode. Previously proposed mechanisms involving a UO(2)(C(2)O(4))(2)(2-) (1:2) complex as the main photoreactive species are thus unlikely to apply, because the two oxalic acids are bound to uranium in a chelating binding mode. Our DFT results suggest that the relevant photoreactive species are UO(2)(C(2)O(4))(3)(4-) (1:3) and (UO(2))(2)(C(2)O(4))(5)(6-) (2:5) complexes binding uranium in an unidentate fashion. These species go through decarboxylation upon excitation to the triplet state, which ensues the release of CO(2) and reduction of U(vi) to U(v). The calculations also suggest an alternative intermolecular pathway at low pH via an electron transfer between the excited state *UO(2)(2+) and hydrogen oxalate (HC(2)O(4)(-)) which eventually leads to the production of CO and OH(-) with no net reduction of U(VI). The calculated results are consistent with previous experimental findings that CO is only detected at low pH while U(IV) is detected only at high pH.  相似文献   

3.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

4.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

5.
The reaction of the molecular transition metal iodate, Cs[CrO(3)(IO(3))], with UO(3) under mild hydrothermal conditions provides access to a new low-dimensional, mixed-metal U(VI) compound, Cs(2)[(UO(2))(CrO(4))(IO(3))(2)] (1). The structure of 1 is quite unusual and consists of one-dimensional (1)(infinity)[(UO(2))(CrO(4))(IO(3))(2)](2-) ribbons separated by Cs(+) cations. These ribbons are formed from [UO(7)] pentagonal bipyramids that contain a uranyl core, [CrO(4)] tetrahedra, and both monodentate and bridging iodate anions. Crystallographic data: 1, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4 (T = 193 K).  相似文献   

6.
In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.  相似文献   

7.
Sasaki T  Meguro Y  Yoshida Z 《Talanta》1998,46(4):689-695
UV-visible absorption spectra of uranium(VI)-tributylphosphate (U(VI)-TBP) complex dissolved in supercritical CO(2) at 40-60 degrees C and 100-250 kg cm(-2) were recorded. Wavelengths and molar extinction coefficients for the absorption peaks of U(VI)-TBP were determined and confirmed to be in good agreement with those of UO(2)(NO(3))(2)(TBP)(2) complex dissolved in organic solvents such as n-hexane. The absorbance at a given wavelength was proportional to the concentration of U(VI) species in supercritical CO(2), indicating a feasibility of in-situ determination of U(VI) concentration in CO(2) phase. A lower detection limit of U(VI)-TBP complex was estimated to be ca. 1x10(-3)M. The molar extinction coefficient of U(VI)-TBP in supercritical CO(2) decreased slightly with an increase of the density of CO(2) medium, suggesting that the solute-solvent interaction of U(VI)-TBP complex with CO(2) was affected by the density. On the basis of the spectra obtained, phase behavior and solubility of UO(2)(NO(3))(2)(TBP)(2)+H(NO(3))(TBP)+TBP in supercritical CO(2) were elucidated.  相似文献   

8.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

9.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

10.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

11.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

12.
The complexation of U(VI) with humic acid (HA) in aqueous solution has been investigated at an ionic strength of 0.1 M (NaCl) in the pH range between pH 2 and 10 at different carbonate concentrations by attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. For the first time, the formation of binary and ternary U(VI) humate complexes was directly verified by in situ spectroscopic measurements. The complex formation constants for the binary U(VI) humate complex (UO(2)HA(II)) and for the ternary U(VI) mono hydroxo humate complex (UO(2)(OH)HA(I)) as well as the ternary U(VI) dicarbonato humate complex (UO(2)(CO(3))(2)HA(II)(4-)) determined from the spectroscopic data amount to log β(0.1 M) = 6.70 ± 0.25, log β(0.1 M) = 15.14 ± 0.25 and log β(0.1 M) = 24.47 ± 0.70, respectively, and verify literature data.  相似文献   

13.
The bifunctional carbamoyl methyl sulfoxide ligands, PhCH(2)SOCH(2)CONHPh (L1), PhCH(2)SOCH(2)CONHCH(2)Ph (L2), PhSOCH(2)CON(i)Pr(2)(L3), PhSOCH(2)CONBu(2)(L4), PhSOCH(2)CON(i)Bu(2)(L5) and PhSOCH(2)CON(C(8)H(17))(2)(L6) have been synthesized and characterized by spectroscopic methods. The selected coordination chemistry of L1, L3, and L5with [UO(2)(NO(3))(2)] and [Ce(NO(3))(3)] has been evaluated. The structures of the compounds [UO(2)(NO(3))(2)(PhSOCH(2)CON(i)Bu(2))](10) and [Ce(NO(3))(3)(PhSOCH(2)CONBu(2))(2)](12) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of ligand L6 with U(VI), Pu(IV) and Am(III) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) in up to 10 M HNO(3) but not for Am(III). Thermal studies on compounds 8 and 10 in air revealed that the ligands can be destroyed completely on incineration. The electron spray mass spectra of compounds 8 and 10 in acetone show that extensive ligand distribution reactions occur in solution to give a mixture of products with ligand to metal ratios of 1: 1 and 2 :1. However, 10 retains its solid state structure in CH(2)Cl(2).  相似文献   

14.
Four heterobimetallic U(vi)/M(ii) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M(2)[(UO(2))(6)(PO(3)CH(2)CO(2))(3)O(3)(OH)(H(2)O)(2)]·16H(2)O (M = Mn(ii), Co(ii), and Cd(ii)) adopt cubic three-dimensional network structures with large cavities approximately 16 ? in diameter that are filled with co-crystallized water molecules. [Cd(3)(UO(2))(6)(PO(3)CH(2)CO(2))(6)(H(2)O)(13)]·6H(2)O forms a rhombohedral channel structure with hydrated Cd(ii) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO(2) uptake of 40 m(2) g(-1) at 273 K, and no uptake of N(2) at 77 K.  相似文献   

15.
The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, [UO(2)(OH)(O(2))](-) and [(UO(2))(2)(OH)(O(2))(2)](-). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for [(UO(2))(2)(OH)(O(2))(2)](-) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of [(UO(2))(OH)(O(2))](-) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that [(UO(2))(OH)(O(2))](-) might be the building block in cluster compounds such as [UO(2)(OH)(O(2))](60)(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide might contribute both to the corrosion of the fuel and to transport of uranium in a ground water system.  相似文献   

16.
The isomorphous compounds NH(4)[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (1), K[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (2), Li(3)O[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (3), and Ba[(UO(6))(2)(UO(2))(9)(GeO(4))(2)] (4) were synthesized by hydrothermal reaction at 220 °C. The structures were determined using single crystal X-ray diffraction and refined to R(1) = 0.0349 (1), 0.0232 (2), 0.0236 (3), 0.0267 (4). Each are trigonal, P(3)1c. 1: a = 10.2525(5), c = 17.3972(13), V = 1583.69(16) ?(3), Z = 2; 2: a = 10.226(4), c = 17.150(9), V = 1553.1(12) ?(3), Z = 2; 3: a = 10.2668(5), c = 17.0558(11), V = 1556.94(15) ?(3), Z = 2; 4: a = 10.2012(5), c = 17.1570(12), V = 1546.23(15) ?(3), Z = 2. There are three symmetrically independent U sites in each structure, two of which correspond to typical (UO(2))(2+) uranyl ions and the other of which is octahedrally coordinated by six O atoms. One of the uranyl ions donates a cation-cation interaction, and accepts a different cation-cation interaction. The linkages between the U-centered polyhedra result in a relatively dense three-dimensional framework. Ge and low-valence sites are located within cavities in the framework of U-polyhedra. Chemical, thermal, and spectroscopic characterizations are provided.  相似文献   

17.
Kinetics of the overall reaction [Cr(3)O(O(2)CCH(3))(6)(H(2)O)(3)](+) + 3 urea right harpoon over left harpoon [Cr(3)O(O(2)CCH(3))(6)(urea)(3)](+) + 3H(2)O have been studied spectrophotometrically. Monophasic kinetics were observed in both directions. The reverse steps, of urea dissociation, were monitored using an analytical technique which permits direct determination of the concentration of liberated urea and does not require knowledge of extinction coefficients of intermediate species. Results imply that consecutive steps occur with rate constants in close to the statistical ratios of k(1):k(2):k(3) = 3:2:1 and k(-)(1):k(-)(2):k(-)(3) = 1:2:3. Rates indicate strong labilization of urea, compared to the case of mononuclear complex [Cr(urea)(6)](3+).  相似文献   

18.
The structure of a novel mixed-valent chromium uranyl compound, (C(3)NH(10))(10)[(UO(2))(13)(Cr(12)(5+)O(42))(Cr(6+)O(4))(6)(H(2)O)(6)](H(2)O)(6) (1), obtained by the combination of a hydrothermal method and evaporation from aqueous solutions with isopropylammonium, contains uranyl chromate hemispheres with lateral dimensions of 18.9 × 18.5 ?(2) and a height of about 8 ?. The hemispheres are centered by a UO(8) hexagonal bipyramid surrounded by six dimers of Cr(5+)O(5) square pyramids, UO(7) pentagonal bipyramids, and Cr(6+)O(4) tetrahedra. The hemispheres are linked into two-dimensional layers so that two adjacent hemispheres are oriented in opposite directions relative to the plane of the layer. From a topological point of view, the hemispheres have the formula U(21)Cr(23) and can be considered as derivatives of nanospherical cluster U(26)Cr(36) composed of three-, four-, and five-membered rings.  相似文献   

19.
The carbonate complexation of curium(III) in aqueous solutions with high ionic strength was investigated below solubility limits in the 10-70 degrees C temperature range using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The equilibrium constant, K(3), for the Cm(CO(3))(2-) + CO(3)(2-) right harpoon over left harpoon Cm(CO(3))(3)(3-) reaction was determined (log K(3) = 2.01 +/- 0.05 at 25 degrees C, I = 3 M (NaClO(4))) and compared to scattered previously published values. The log K(3) value for Cm(III) was found to increase linearly with 1/T, reflecting a negligible temperature influence on the corresponding molar enthalpy change, Delta(r)H(3) = 12.2 +/- 4.4 kJ mol(-1), and molar entropy change, Delta(r)S(3) = 79 +/- 16 J mol(-1) K(-1). These values were extrapolated to I = 0 with the SIT formula (Delta(r)H(3) degrees = 9.4 +/- 4.8 kJ mol(-1), Delta(r)S(3) degrees = 48 +/- 23 J mol(-1) K(-1), log K(3) degrees = 0.88 +/- 0.05 at 25 degrees C). Virtually the same values were obtained from the solubility data for the analogous Am(III) complexes, which were reinterpreted considering the transformation of the solubility-controlling solid. The reaction studied was found to be driven by the entropy. This was interpreted as a result of hydration changes. As expected, excess energy changes of the reaction showed that the ionic strength had a greater influence on Delta(r)S(3) than it did on Delta(r)H(3).  相似文献   

20.
The complexation between uranium(vi) and nitrate ions in a hydrophobic ionic liquid (IL), namely [BMI][NO(3)] (BMI = 1-butyl-3-methylimidazolium(+)), is investigated by EXAFS spectroscopy. It was performed by dissolution of uranyl nitrate UO(2)(NO(3))(2)·6H(2)O or UO(2)(Tf(2)N)(2) (Tf(2)N = bis(trifluoromethylsulfonyl)imide (CF(3)SO(2))(2)N(-)). The formation of the complex UO(2)(NO(3))(4)(2-) is evidenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号