首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

2.
The syntheses and crystal structures of a series of zirconium(IV) and hafnium(IV) complexes with Dawson monovacant phosphotungstate [alpha2-P2W17O61](10-) and in situ-generated Keggin monovacant phosphotungstate [alpha-PW11O39](7-), which was obtained by a reaction of [alpha-PW12O40](3-) with Na2CO3, are described. K15H[Zr(alpha2-P2W17O61)2].25H2O (K-1), K16[Hf(alpha2-P2W17O61)2].19H2O (K-2), (Et2NH2)10[Zr(alpha-PW11O39)2].7H2O (Et2NH2-3), and (Et2NH2)10[Hf(alpha-PW11O39)2].2H2O (Et2NH2-4), being afforded by reactions in aqueous solutions of monolacunary Dawson and Keggin polyoxotungstates with ZrCl2O.8H2O and HfCl2O.8H2O followed by exchanging countercations, were obtained as analytically pure, homogeneous colorless crystals. Single-crystal X-ray structure analyses revealed that the Zr(IV) and Hf(IV) ions are in a square antiprismatic coordination environment with eight oxygen atoms, four of them being provided from each of the two monovacant polyanion ligands. Although the total molecular shapes and the 8-coordinate zirconium and hafnium centers of complexes 1-4 are identical, the bonding modes (bond lengths and bond angles) around the zirconium(IV) and hafnium(IV) centers were dependent on the monovacant structures of the polyanion ligands. Additionally, the characterization of complexes 1-4 was accomplished by elemental analysis, TG/DTA, FTIR, and solution (31P and 183W) NMR spectroscopy.  相似文献   

3.
A series of zirconium and hafnium heteroscorpionate complexes have been prepared by the reaction of MCl4 (M = Zr, Hf) with the compounds [[Li(bdmpza)(H2O)](4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [[Li(bdmpzdta)(H2O)](4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] (the latter with the prior addition of Bu(n)Li). Under the appropriate experimental conditions, mononuclear complexes, namely, [MCl3(kappa3-bdmpzx)] [x = a, M = Zr (1), Hf (2); x = dta, M = Zr (3), Hf (4); x = e, M = Zr (5), Hf (6)], and dinuclear complexes, namely, [[MCl2(mu-OH)(kappa3-bdmpzx)]2] [x = a, M = Zr (7), Hf (8); x = dta, M = Zr (9); x = e, M = Zr (10)], were isolated. A family of alkoxide-containing complexes of the general formula [ZrCl2(kappa3-bdmpzx)(OR)] [x = a, R = Me (11), Et (12), iPr (13), tBu (14); x = dta, R = Me (15), Et (16), iPr (17), tBu (18); x = e, R = Me (19), Et (20), (i)Pr (21), (t)Bu (22)] was also prepared. Complexes 11-14 underwent an interesting hydrolysis process to give the cluster complex [Zr6(mu3-OH)8(OH)8(kappa2-bdmpza)8] (23). The structures of these complexes have been determined by spectroscopic methods, and the X-ray crystal structures of 7, 8, and 23 were also established.  相似文献   

4.
The electrophoresis of zirconium and hafnium ions in aqueous solutions was investigated. No-carrier-added 88Zr and 175Hf have been used in microconcentrations (10-11M). The complexation of zirconium and hafnium with DTPA has been investigated in a large pH interval. The stability constants of the Zr-DTPA and Hf-DTPA complexes were determined for the first time by the method of horizontal zone electrophoresis in free electrolyte. The electrophoretic behavior of Zr(IV) and Hf(IV) ions in nitric acid solutions has also been studied.  相似文献   

5.
This paper focuses on the development of potential single source precursors for M-N-Si (M = Ti, Zr or Hf) thin films. The titanium, zirconium, and hafnium silylimides (Me(2)N)(2)MNSiR(1)R(2)R(3) [R(1) = R(2) = R(3) = Ph, M = Ti(1), Zr (2), Hf (3); R(1) = R(2) = R(3) = Et, M = Ti (4), Zr (5), Hf (6); R(1) = R(2) = Me, R(3) = (t)Bu, M = Ti (7), Zr (8), Hf (9); R(1) = R(2) = R(3) = NMe(2), M = Ti (10), Zr (11), Hf (12)] have been synthesized by the reaction of M(NMe(2))(4) and R(3)R(2)R(1)SiNH(2). All compounds are notably sensitive to air and moisture. Compounds 1, 2, 4, and 7-10 have been structurally characterized, and all are dimeric, with the general formula [M(NMe(2))(2)(μ-NSiR(3))](2), in which the μ(2)-NSiR(3) groups bridges two four-coordinate metal centers. The hafnium compound 3 possesses the same basic dimeric structure but shows additional incorporation of liberated HNMe(2) bonded to one metal. Compounds 11 and 12 are also both dimeric but also incorporate additional μ(2)-NMe(2) groups, which bridge Si and either Zr or Hf metal centers in the solid state. The Zr and Hf metal centers are both five-coordinated in these species. Aerosol-assisted CVD (AA-CVD) using 4-7 and 9-12 as precursors generates amorphous films containing M, N, Si, C, and O; the films are dominated by MO(2) with smaller contributions from MN, MC and MSiON based on XPS binding energies.  相似文献   

6.
The zirconium and hafnium imido metalloporphyrin complexes (TTP)M = NArtPr (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion; M = Zr (1), Hf; AriPr = 2,6-diisopropylphenyl) were used to mediate addition reactions of carbonyl species and metathesis of nitroso compounds. The imido complexes react in a stepwise manner in the presence of 2 equiv of pinacolone to form the enediolate products (TTP)M[OC(tBu)CHC(tBu)(Me)O] (M = Zr (2), Hf (3)), with elimination of H2NAriPr. The bis(mu-oxo) complex [(TTP)ZrO]2 (4) is formed upon reaction of (TTP)Zr = NAriPr with PhNO. Treatment of compound 4 with water or treatment of compound 2 with acetone produced the (mu-oxo)bis(mu-hydroxo)-bridged dimer [(TTP)Zr]2(mu-O)(mu-OH)2 (5). Compounds 2, 4, and 5 were structurally characterized by single-crystal X-ray diffraction.  相似文献   

7.
Fluorite-type Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2 have been synthesized by a solution combustion route, and their oxygen release and reduction have been investigated up to 850 degrees C. On reduction, the zirconium system forms two pyrochlore phases, Ce2Zr2O7 (pyrochlore-I) and Ce2Zr2O6.2 (pyrochlore-II), while the hafnium system forms only a disordered fluorite phase with the composition Ce0.5Hf0.5O1.77, under the same experimental conditions. The crystal structures of the reduction products have been characterized by powder X-ray diffraction and Rietveld refinement, and their electronic structures have been investigated by photoelectron spectroscopy and electrical conductivity measurements. Pyrochlore-I (a = 10.6727(4) A) is a semiconductor, while pyrochlore-II (a = 10.6463(8) A) is a good conductor (with a nearly temperature independent resistivity of approximately 2.5 ohm.cm in the 400-1000 K range). X-ray photoelectron spectroscopy (XPS) shows an admixture of Ce(5d,6s) with Zr(4d) and O(2p) and a significant density of states near EF in the highly reduced pyrochlore-II phase. The changes have been rationalized in terms of a qualitative energy band scheme that brings out the special role of zirconium vis-à-vis hafnium in the reduction/oxygen release properties of Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2.  相似文献   

8.
The characteristics of thee colored chelates of titanium(IV), zirconium(IV), and hafnium(IV) with dibromopyrogallol red have been described. The studies include the determination of molar ratio by two different methods, the range of pH for the stability of the chelates and the evaluation of the conditional stability constants by two methods, i.e., method of Dey and mole ratio method. The λmax of the ligand was found to be at 430 mμ and that of the chelates of Ti(IV), Zn(IV), Hf(IV) were 560, 550, and 550 mμ, at the pH of study, i.e., 1.5, 0.6, and 1.0, respectively.  相似文献   

9.
Takeda Y  Ishida K 《Talanta》1997,44(5):849-853
The thin-layer chromatographic (TLC) behaviour of 64 ions including Zr(IV) and Hf(IV) has been surveyed on systems composed of silica gel and of nitric acid and nitric acid-hydrogen peroxide media. In the 0.5 mol 1(-1) HNO(3)-3% (w/v) H(2)O(2) solution, only Hf(IV) adsorbed very strongly, whereas Zr(IV) and many other ions showed no or weak adsorption. Stepwise development with diluted nitric acid and subsequently with nitric acid-hydrogen peroxide solution allowed the consecutive separation of three-component mixtures consisting of Zr(IV), Hf(IV) and one of many other accompanying elements, such as Mo(VI), Nb(V), Th(IV), Ti(IV), U(VI) and rare earths(III), to be conducted simply and effectively.  相似文献   

10.
Himeno S  Kitano E  Chaen N 《Electrophoresis》2007,28(10):1525-1529
A CE method was developed for the simultaneous determination of Zr(IV) and Hf(IV) at trace levels. A lacunary Keggin-type [PW(11)O(39)](7-) ligand reacted quantitatively with a mixture of trace amounts of Zr(IV) and Hf(IV) to form the so-called ternary Keggin-type anions [P(Zr(IV)W(11))O(40)](5-) and [P(Hf(IV)W(11))O(40)](5-) in 0.010 M monochloroacetate buffer (pH 2.2). Since both ternary anions possessed different electrophoretic mobilities and high molar absorptivities in the UV region, Zr(IV) and Hf(IV) were determined simultaneously with direct UV detection at 258 nm. Each peak height was linearly dependent on the concentration of Zr(IV) or Hf(IV) in the range of 5.0x10(-7)-1.0x10(-5) M; a detection limit of 2x10(-7) M was achieved. The utility of the proposed CE method was demonstrated for the simultaneous determination of Zr(IV) and Hf(IV) in natural water samples with satisfactory results.  相似文献   

11.
Preparation and use of a resin with 1.8-dihydroxynaphthalene-O,O-diacetic acid as chelating group are described. Besides the separation of many of the common interfering ions it also permits the separation of Hf. The following ions could be separated quantitatively: Mg(II), Pb(II), Cu(II), Fe(III), La(III), Ce(IV), Th(IV), Ti(IV), and U(VI). During these and further qualitative and quantitative experiments no interfering ions could be found. A method for the separation of95Zr from its daughter nuclide95Nb is also described. The main problem proved to be the separation of Zr(IV) and Hf(IV), owing to their close resemblance. To accomplish quantitative determination of Zr and Hf without any separation,95Zr and175+181Hf radioisotopes were used. The chelating resin permits the separation of 95% of Hf(IV) from an equimolar solution. The main part of Hf(IV) is eluated by 2M hydrochloric acid, and subsequently Zr(IV) by 0.75M oxalic acid. The rest of Hf is enriched in the first fractions of the oxalic acid eluate, so that when eliminating these, even after a single step experiment hafnium free from zirconium and a rather pure fraction of zirconium are obtained. Even under extreme conditions of concentration (Zr∶Hf=91∶1) 75% of Hf can be separated free from Zr in a single step experiment.

Vorgetragen auf der IUPAC-Tagung in Prag, 1967.  相似文献   

12.
We have synthesized and structurally characterized the unprecedented peroxo-zirconium(IV) containing [Zr6(O2)6(OH)6(gamma-SiW10O36)3]18- (1). Polyanion 1 comprises a cyclic 6-peroxo-6-zirconium core stabilized by three decatungstosilicate units. We have also prepared the isostructural hafnium(IV) analogue [Hf6(O2)6(OH)6(gamma-SiW10O36)3]18- (2). We investigated the acid/base and redox properties of 1 by UV-vis spectroscopy and electrochemistry studies. Polyanion 1 represents the first structurally characterized Zr-peroxo POM with side-on, bridging peroxo units. The simple, one-pot synthesis of 1 and 2 involving dropwise addition of aqueous hydrogen peroxide could represent a general procedure for incorporating peroxo groups into a large variety of transition metal and lanthanide containing POMs.  相似文献   

13.
An isostructural series of titanium, zirconium, and hafnium complexes, M[ap] 2L 2 (M = Ti, Zr, Hf; L = THF, pyridine), of the redox-active 4,6-di- tert-butyl-2- tert-butylamidophenolate ligand ([ap] (2-)) have been prepared. The zirconium and hafnium derivatives react readily with halogen oxidants such as XeF 2, PhICl 2, and Br 2, leading to products in which one-electron oxidation of each [ap] (2-) ligand accompanies halide addition to the metal center. Iodine proved to be too weak of an oxidant to yield the corresponding oxidative addition product, and under no conditions could halogen oxidative addition products be obtained for titanium. According to X-ray crystallographic studies, the zirconium and hafnium oxidation products are best formulated as MX 2[isq.] 2 ([isq.] (-) = 4,6-di- tert-butyl-2- tert-butylimino-semiquinonate; M = Zr, Hf; X = F, Cl, Br) species, in which the molecule is symmetric with each redox-active ligand in the semiquinone oxidation state. Temperature-dependent magnetization measurements suggest a singlet ( S = 0) ground-state for the diradical complexes with a thermally accessible triplet ( S = 1) excited state. Solution electron paramagnetic resonance (EPR) spectra are consistent with this assignment, showing both Delta m s = 1 and Delta m s = 2 transitions for the antiferromagnetically coupled electrons.  相似文献   

14.
15.
A study has been made of the dependence of the sorption of scandium, zirconium, hafnium and thorium from aqueous solutions with a silica-based sulphonic cation-exchanger (SCE-SiO(2)) on the concentration and nature of the acid medium, time of contact, concentration of the element, and the ionic strength. The selectivity decreases in the order Zr approximately Hf > Th > Sc > Fe(III). The sorption characteristics of silica gel and SCE-SiO(2) have been compared, and the sorption mechanism is discussed. The SCE-SiO(2) exchanger has been used for 100-fold concentration of scandium, zirconium, hafnium and thorium from their 10(-8)-10(-7) M solutions, and a spectrophotometric method has been developed for their determination with a detection limit of 0.5 ng/ml for Zr and Sc and 0.1 ng/ml for Hf and Th. Zirconium and hafnium have been determined in the solvent phase by X-ray fluorescence and atomic-emission methods.  相似文献   

16.
Manke DR  Nocera DG 《Inorganic chemistry》2003,42(14):4431-4436
The coordination chemistry of the bis(tert-butylamido)phenylborane ligand, [(t)BuN-B(Ph)-N(t)Bu](2)(-), is developed. The ligand can be delivered to metals of groups 4 and 5 from its dilithio salt. The reactions of PhB((t)BuNLi)(2), 1, with metal halides of zirconium, hafnium, and vanadium generate complexes of the general formulas ((t)BuN-B(Ph)-N(t)Bu)(2)M(THF) (M = Zr (2), Hf (3)), Li(2)[M((t)BuN-B(Ph)-N(t)Bu)(3)] (M = Zr (4), Hf (5)), and M((t)BuN-B(Ph)-N(t)Bu)(2) (M = V (6)). (1)H and (11)B[(1)H] NMR and single-crystal X-ray analysis show that these amido metal complexes are structurally analogous to amidinates.  相似文献   

17.
二烷基二硫代氨基甲酸基作为良好的双齿配体较易与过渡金属生成高配位的配合物,含有环戊二烯基的高配位钛、锆、铪配合物的研究相继出现,这类七配位、18-电子构型的配合物是立体化学刚性,具有独特的光谱性质和结构行为。选择钛、锆和铪二茂二氯化物与三当量的二苄基二硫代氨基甲酸钠反应合成了五种未见报道的七配位配合物,讨论了产物的光谱性质和配位结构。  相似文献   

18.
A neutral polystyrene resin column, dynamically loaded with dipicolinic acid at a concentration of 0.1 mM in 1 M potassium nitrate eluent, was investigated for the separation characteristics of a number of high valence metal cations over the pH range 0-3. The metal species studied were Th(IV), U(VI), Zr(IV), Hf(IV), Ti(IV), Sn(IV), V(IV) and V(V), Fe(III) and Bi(III), of which Ti(IV), Sn(IV), V(IV) and Fe(III) did not show any retention. For the remaining metal ions, significant retention was obtained with good peak shapes, except for Th(IV), which moved only slightly from the solvent front with some tailing. The retention order at pH 0.3 was Th(IV) < V(V) < Bi(III) < U(VI) < Hf(IV) < Zr(IV). A notable feature of this separation system was the high selectivity shown for uranium, zirconium and hafnium, the last two being nearly resolved in 15 min on the relatively short 10 cm column.  相似文献   

19.
We report the synthesis, spectroscopic and structural characterization, and computational analysis of a series of phosphomolybdate complexes with tetravalent metal cations. The reaction between Ce (IV) and Th (IV) with phosphomolybdate at the optimum pH for the stabilization of the lacunary heteropolyoxometalate anion, [PMo 11O 39] (7-), results in the formation of compounds containing the anions [Ce(PMo 11O 39) 2] (10-) and [Th(PMo 11O 39) 2] (10-), respectively. Single crystal X-ray diffraction analysis was performed on salts of both species, Cs 10[Ce(PMo 11O 39) 2].20H 2O and (NH 4) 10[Th(PMo 11O 39) 2].22H 2O. In both anionic complexes the f-block metal cation is coordinated to the four unsaturated terminal lacunary site oxygens of each [PMo 11O 39] (7-) anion, yielding 8 coordinate sandwich complexes, analogous to previously prepared related complexes. Spectroscopic characterization points to the stability of these complexes in solution over a reasonably wide pH range. Density functional analysis suggests that the Ce-O bond strength in [Ce(PMo 11O 39) 2] (10-) is greater than the Th-O bond strength in [Th(PMo 11O 39) 2] (10-), with the dominant bonding interaction being ionic in both cases. In contrast, under similar reaction conditions, the dominant solid state Zr (IV) and Hf (IV) complexes formed contain the anions [Zr(PMo 12O 40)(PMo 11O 39)] (6-) and [Hf(PMo 12O 40)(PMo 11O 39)] (6-), respectively. In these complexes the central Group 4 d-block metal cations are coordinated to the four unsaturated terminal lacunary site oxygens of the [PMo 11O 39] (7-) ligand and to four bridging oxygens of a plenary Keggin anion, [PMo 12O 40] (3-). In addition, (NH 4) 5{Hf[PMo 12O 40][(NH 4)PMo 11O 39]}.23.5H 2O can be crystallized as a minor product. The structure of the anion, {Hf[PMo 12O 40][(NH 4)PMo 11O 39]} (5-), reveals coordination of the central Hf (IV) cation via four bridging oxygens on both the coordinated [PMo 11O 39] (7-) and [PMo 12O 40] (3-) anions. Unusually, the highly charged lacunary site remains uncoordinated to the Hf metal center but instead interacts with an ammonium cation. (31)P NMR indicates that complexation of the Keggin anion, [PMo 12O 40] (3-), to Hf (IV) and Zr (IV) will stabilize the Keggin anion to a much higher pH than usually observed.  相似文献   

20.
Dinuclear titanium, zirconium, and hafnium oxide clusters, M2O2 and M2O4 (M = Ti, Zr, Hf) have been prepared and characterized by matrix isolation infrared spectroscopy and quantum chemical calculations. The M2O2 clusters were formed through the reactions of metal dimers and O2 in solid argon upon sample annealing. Theoretical calculations indicate that the Ti2O2 cluster has a singlet ground state with a nonplanar cyclic C(2v) structure with a strong Ti-Ti bond, while the Zr2O2 and Hf2O2 clusters have planar cyclic structures. The M2O4 clusters were characterized to have a closed-shell singlet ground state with a nonplanar C2h symmetry, which were formed from the dimerization of the metal dioxide molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号