首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled porous glasses (CPG) are often employed as packing materials for gas and liquid chromatography. The characteristic feature of CPG is the presence of surface boron atoms, the concentration of which can easily be changed by appropriate thermal treatment. The use of thermally treated CPG as a support in the pyrolysis of alcohols causes the formation of graphite in the carbon deposit obtained. The properties of thermally treated CPG and the same CPG with a carbon deposit on their surface was investigated by means of the hydrogenolysis reaction of n-butane. The results obtained suggest that the pyrolysis of a constant molar amount of alkanols differing in their chain lengths leads to blocking of the same centres on the CPG surface.  相似文献   

2.
Summary The properties and the coverage density of chemically bonded phases depend among others on the properties of their supports. Controlled-porosity glasses (CPG) are materials used as a support of bio-active ligands. Their network mainly consist of SiO2 as well as of a small amount of B2O3 and Na2O. The characteristic feature of porous glasses is the possibility of a change in the surface boron concentration leading to the change of the properties of their surface.This paper deals with the results of the separation of fungal proteins on packings consisting of vanillin bonded to CPG with different boron concentration on its surface. It appears from the data obtained that the changes in the affinity of the fungal proteins to the packing are related to the extend of the thermal treatment of the CPG. The protein fractions separated by chromatography were confirmed to be homogeneous by poly-acryloamide gel disc electrophoresis.  相似文献   

3.
Summary The affinity of peroxidase and the fungal proteins to vanillin attached to controlled porous glasses depends on the porosity of the glass and additional thermal treatment of the support. The additional thermal treatment of controlled porous glasses leads to an enrichment in boron atoms of their surface.The results presented in this paper show a better resolution of the analyzed substances when glass with a surface enriched in boron was used as the support for vanillin.  相似文献   

4.
Summary Controlled-porosity glasses (CPG) are sieves for macromoleculars, very widely applied in chromatographic columns for the separation of polymers and biopolymers by means of size-exclusion chromatography (SEC) and affinity chromatography. This paper deals with the influence of the thermal treatment of CPG on the elution of polymers in SEC columns. The problem is examined for a few mobile phases and for glasses having different porosities. Additionally, the SEC results obtained are compared with the adsorption properties of the glases investigated.  相似文献   

5.
The glass transition behavior of glycerol and propylene glycol confined in nanoporous glass is investigated using differential scanning calorimetry. Both silanized and unsilanized porous glasses are used to confine the liquids with nominal pore sizes ranging from 2.5 to 7.5 nm, and the glass transition temperature (T(g)) and the limiting fictive temperature (T(f )') are measured on cooling and heating, respectively. The effect of pore fullness is also examined. We find that differences in T(g), DeltaC(p), and the enthalpy overshoot behavior observed on heating are significant between partially and completely filled pores for the case of the unsilanized controlled pore glasses (CPGs) but that the effect of pore fullness is insignificant for the silanized CPGs. In general, the behavior in the silanized CPGs is similar to the behavior in the completely filled unsilanized pores. For glycerol, this includes a small depression in T(f )' on the order of 5 K at 2.5 nm. For propylene glycol, similar behavior is found except that an additional glass transition is observed in both silanized and unsilanized systems approximately 30 K higher than the bulk and a slightly smaller depression on the order of 3 K at 2.5 nm is observed in the completely filled unsilanized pores and in partially and completely filled silanized pores. The results are compared to those in the literature, and the confinement effects are discussed.  相似文献   

6.
The accessibility of various solid supports (TentaGel, PEGA 1900, and beaded controlled pore glasses (CPGs)) to a range of enzymes was investigated. The different beaded materials were loaded with the peptide 4-cyanobenzamide-Gly-Pro-Leu-Gly-Leu-Phe-Ala-Arg-OH and incubated with the enzymes MMP-12 (22 kDa), thermolysin (35 kDa), MMP-13 (42.5 kDa), clostridium collagenase (68 kDa), and NEP (90 kDa). The absence/presence of the cyano stretching frequency was measured by means of confocal Raman microscopy. It was found that none of the investigated enzymes could enter the polymer matrices of TentaGel. PEGA 1900 was compatible only with the two smallest enzymes, while beaded CPG was successful even with NEP (90 kDa), proving its superiority over other materials in terms of bio-compatibility.  相似文献   

7.
Dissolution of oxide glasses by water has been studied by small angles X-ray scattering. It is shown that the altered residual surface layer due to dissolution and recondensation of Si atoms is a porous material with nanometer size pores. Based on five elements oxide glass (18NaO2-17B2O3-4CaO-yZrO2-(61-y)SiO2 with y=0, 1, 2, 4 and 8) the experiment highlights a strong influence of insoluble element on both the kinetic of alteration and the structure of the altered layer. It is shown that above 2% Zr content, the fraction of porous volume and the surface of exchange in the altered layer pass through a maximum value in the first hours of alteration corresponding to an overshoot of Si lixiviation without recondensation as the saturation limit is not reached. When the saturation limit is reached the porous volume fraction is just below the fraction of volume occupied primarily by the sodium and the boron.  相似文献   

8.
Overhauser dynamic nuclear polarization (ODNP) can be used as a tool for NMR signal enhancement and happens on very short time scales. Therefore, ODNP is well suited for the measurement of fast-flowing samples, even in compact magnets, which is beneficial for the real-time monitoring of chemical reactions or processes. ODNP requires the presence of unpaired electrons in the sample, which is usually accomplished by the addition of stable radicals. However, radicals affect the nuclear relaxation times and can hamper the NMR detection. This is circumvented by immobilizing radicals in a packed bed allowing for the measurement of radical-free samples when using ex situ DNP techniques (DNP build-up and NMR detection happen at different places) and flow-induced separation of the hyperpolarized liquid from the radicals. Therefore, the synthesis of robust and chemically inert immobilized radical matrices is mandatory. In the present work, this is accomplished by immobilizing the radical glycidyloxy-tetramethylpiperidinyloxyl with a polyethyleneimine (PEI) linker on the surface of controlled porous glasses (CPG). Both the porosity of the CPGs and also the size of the PEI-linker were varied, resulting in a set of distinct radical matrices for continuous-flow ODNP. The study shows that CPGs with PEI-linkers provide robust, inert and efficient ODNP matrices.  相似文献   

9.
We have used a photocaging strategy to develop novel phosphoramidites and expand the repertoire of protecting groups for modification of oligonucleotides by solid-phase synthesis. We synthesised five photolabile phosphoramidites and four new photolabile controlled pore glasses (CPGs). By using these photolabile phosphoramidites and CPGs, modified oligodeoxynucleotides (ODNs) with phosphate, amine, acid, thiol and carbonyl moieties at 5' and/or 3' ends were readily synthesised. To the best of our knowledge, this is the first report of introducing a carbonyl at the 5' end and thiol groups at both ends of ODNs with photolabile modifiers. Terminal labelling was also easily realised in solution or by on-column solid-phase synthesis. By using the photolabile amine modifier and the photolabile acid CPG, cyclisation of an oligodeoxynucleotide was achieved with good yields. This study provides an alternative way to introduce functional groups into oligonucleotides and expand the scope of oligonucleotide bio-orthogonal labelling.  相似文献   

10.
The melting temperature depression of pentaerythritol tetranitrate, nanoconfined in controlled pore glasses (CPG), was systematically studied by differential scanning calorimetry (DSC). The solid–liquid interfacial energy σ sl was obtained from the Gibbs–Thomson equation fit to melting temperature vs. reciprocal pore diameter. The pore size distribution of the CPG pores was also estimated from the DSC data. Pore sizes obtained from the manufacturer by BET are compared with those determined from the DSC curves using either the curves directly or by assuming spherical shaped confining cavities. The thermal mass vales are in better agreement with the BET estimation.  相似文献   

11.
Cesium contained in aqueous solutions of different composition was adsorbed in columns packed with controlled porous glasses (CPG) and then removed by means of 1M HCl. Recovery of cesium in the eluate was studied as a function of the solution composition and the kind of CPG.  相似文献   

12.
The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled-pore glasses (CPG) has been carefully studied using 10 MeV electron irradiation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO* does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier-transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses.  相似文献   

13.
We present results from experiments and molecular modeling of mercury porosimetry into mesoporous Vycor and controlled pore glass (CPG) solid materials. The experimental intrusion/extrusion curves show a transition from a type H2 hysteresis for the Vycor glass to a type H1 hysteresis for the CPG. Mercury entrapment is observed in both materials, but we find that the amount of entrapped mercury depends on the chosen experimental relaxation time. No additional entrapment is found in a second intrusion/extrusion cycle, but hysteresis is still observed. This indicates that hysteresis and entrapment are of different origin. The experimental observations are qualitatively reproduced in theoretical calculations based on lattice models, which provide significant insights of the molecular mechanisms occurring during mercury porosimetry experiments in these porous glasses.  相似文献   

14.
Mixed vitreous oxycarbide glasses containing silicon and boron were prepared by pyrolysis of hybrid precursors in N2 at 1100°C. Four different precursors were synthesized through the sol-gel process using TEOS, TEB and PDMS. Poly-condensation between the Si(OH) groups, from the hydrolysed TEOS, and the PDMS was observed by FT-IR spectroscopy. Boron seems not to incorporate into the network until pyrolysis of the precursors that form the oxycarbides. The oxycarbides were porous made of spherical interconnected particles. The porosity and mean pore size of the glasses increased with increasing TEB content.  相似文献   

15.
A new, fast, and simple method based on size exclusion chromatography permits determination of the volumes of open and closed pores of rigid solids such as silica or porous glasses, together with the specific surface and the pore-size distribution for pore diameters ranging from 10 to 4000Å. The results are in good agreement with those obtained by classical methods (capillary condensation, mercury porosimetry).  相似文献   

16.
Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)-bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two-dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar-templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double-layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.  相似文献   

17.
Summary The paper deals with the use of controlled-porosity glasses (CPGs) as adsorbents for HPLC. The physicochemical and chromatographic properties of small-pore CPGs are compared to the analogous properties of silica gels. The results show good correlation between them and suggest the possibility of application of CPGs as adsorbents for liquid chromatography.  相似文献   

18.
A series of controlled pore glasses (CPG) was made from the same raw glass by means of different chemical and thermal treatments. BET specific area, selectivity of cesium adsorption in relation to sodium, ionosorption capacity under dynamic conditions of these CPG were measured and potentiometric titrations carried out. 0 vs. pH curves show i.e.p. and c.i.p. values similar to those for silica. KOH treatment leads to increase of BET specific surface but ionosorption capacity is decreased.  相似文献   

19.
The properties of porous glass membranes prepared by acid leaching of sodium borosilicate glasses 8B and 8V and also 8B glass containing small amounts of fluorine and phosphorus (SFP) are comprehensively studied. The effect of the composition and conditions of thermal treatment of the original and porous glasses on their structural (specific surface area, structure resistance coefficient, average pore radius, volume porosity, and filtration factor) and electrokinetic characteristics (conductivity, counterion transport numbers, and electrokinetic potential) in KCl solutions at neutral pH values is studied. It is shown that an increase in thermal treatment temperature T TT of the porous glasses from 120 to 750°C leads to a decrease in structure resistance coefficient β of 8B membranes. For membranes prepared from SFP glass, β values, efficiency coefficients, and counterion transport numbers are virtually independent of T TT at 120–600°C and increase at T TT = 750°C. Specific surface area and volume porosity decrease with a rise in T TT for all studied membranes. The observed regularities of variations in the membrane characteristics are explained by the increasing fraction of large pores because of sintering of small pores with an increase in T TT and by the different amounts of secondary silica in the pore space of porous glasses.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 299–307.Original Russian Text Copyright © 2005 by Volkova, Ermakova, Sidorova, Antropova, Drozdova.  相似文献   

20.
Three new calix[4]arene-based carboxylate ligands with an appended allyl function have been synthesized, chemically immobilized onto a controlled-pore glass (CPG), and the extracting ability of selected materials towards Sr2+ in solid-liquid extraction was examined. The calixarenes were characterized by elemental analysis, mass spectrometry, IR and NMR spectroscopy, and where appropriate by X-ray crystallography. Four functionalized CPGs were prepared by radical thiol addition of the corresponding 5-allylcalix[4]arenes to γ-mercaptopropyl-modified CPG. Analysis by 13C and 29Si cross polarization/magic angle spinning (CP/MAS) NMR spectroscopy clearly showed the covalent fixation of the calix[4]arenes to CPG. The calix[4]arene phases were found to be stable up to 200 °C by simultaneous thermal analysis (STA). The extraction performance of the modified CPGs towards Sr2+ were found to be superior over the unmodified CPGs as demonstrated by radiotracing using the short-lived radio nuclide 85Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号