首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Vicinal thallium–hydrogen coupling constants are used to discuss conformations in dicyclohexylthallium chloride, bis(4-methylcyclohexyl)thallium chloride and bis(4-tert-butylcyclohexyl)thallium chloride. Thallium does not have a very strong preference for equatorial positions in dicyclohexylthallium chloride, whereas bis(4-alkylcyclohexyl)thallium chlorides exist largely in one conformation. Bis(4-methylcyclohexyl)thallium chloride exists in three isomeric forms; the major product appears to be the cis-isomer (equatorial methyl, axial thallium), with the other two isomers probably containing thallium trans to the methyl group (axial thallium being preferred). The preference for the cis-isomer (equatorial tert-butyl, axial thallium) of bis(4-tert-butylcyclohexyl)thallium chloride is such that other isomers are not obtained.  相似文献   

2.
Sagi SR  Ramana KV 《Talanta》1969,16(8):1217-1221
The reaction between thallium(III) and oxalic acid in sulphuric acid medium has been investigated. Spectrophotometric results show that thallium(III) can be quantitatively reduced to thallium(I) with oxalic acid in aqueous medium when heated to near boiling point. Conditions for the estimation of the excess of oxalic acid with cerium(IV) sulphate in the presence of thallium(I) and for the estimation of a mixture of thallium(I) and thallium(III) have been investigated. The method is simpler than many other redox methods reported for the determination of thallium(III) and is free from many interferences encountered in these titrations. The reagents are cheap and quite stable.  相似文献   

3.
The influence of thallium(I) and thallium(III) on the parameters of the Belousov-Zhabotinskii oscillating chemical reaction in the bromate-cerium(III, IV)-malonic acid-sulfuric acid system was studied. As a result of the addition of thallium(I) and thallium(III), the oscillation parameters change in the same way, which cannot be explained by the complexation of these ions with the bromide only. It was found that during the oscillating reaction, thallium(I) can be oxidized by bromine-containing compounds and thallium(III) reduced by the transformation products of malonic and bromomalonic acids. A scheme of action of a thallium(III)/thallium(I) two-electron redox pair in the oscillating chemical reaction studied has been proposed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 1, pp. 106–111, January–February, 1987.  相似文献   

4.
铊是一种剧毒的蓄积性重金属元素。伴随着含铊矿物资源的开发利用,铊向环境中的迁移已不容忽视,环境铊污染事件时有发生。铊的分析技术对铊污染的防治具有重要意义。环境领域铊的分析技术近年来也有了新的发展。重点对环境水体、土壤、大气中铊元素分析技术的近期发展进行了综述。在电感耦合等离子体-质谱(ICP-MS)、石墨炉原子吸收光谱(GF-AAS)法为主流分析手段的同时,随着铊新型富集技术的应用以及仪器性能的提升,环境铊分析技术呈现出高灵敏、高稳定性的趋势。针对环境领域铊元素分析技术的发展,提出环境样品铊的化学及赋存形态分析、铊的在线监测、与铊高效富集技术的联用以及环境固体废物中铊的分析是其重要的发展方向。  相似文献   

5.
Rao MS  Mohan Rao AR  Ramana KV  Sagi SR 《Talanta》1991,38(8):937-940
Titrimetric and spectrophotometric methods have been developed for the estimation of phosphite at mmole and mumole levels, respectively. Thallium(III) is used as an oxidant and the thallium(I) produced is determined either oxidimetrically with potassium bromate or by measurement of the absorbance of thallium(III) at 260 nm in the presence of 0.1 M hydrochloric acid and 1 M perchloric acid. Based on the fact that phosphite and oxalate are oxidized under different conditions, methods are described for the analysis of binary mixtures of phosphite and oxalate. A method is also described for estimation of thallium(III) with phosphite as reluctant, and is applied for analysis of mixtures of thallium(I) and thallium(III).  相似文献   

6.
Dindi SN  Sarma NV 《Talanta》1985,32(12):1161-1162
A convenient method has been developed for the determination of thallium(III) by using a mercury reductor. Thallium(III) is reduced to thallium(I) in 0.5–4N hydrochloric or sulphuric acid medium and the determination is completed by oxidative titration with potassium bromate. The method is extended to analysis of thallium(III)-thallium(I) and thallium(III)-iron(III) mixtures.  相似文献   

7.
Thallium(III) porphyrins show anomalous features in their mass spectra compared with other metalloporphyrins. The base peak in all of the spectra arises by loss of the thallium atom and its axial ligands with transfer of two hydrogens to the macrocycle; the liberated thallium undergoes ion-molecule interaction with the thallium porphyrin, resulting in the observation of ions containing two thallium atoms per porphyrin ligand.  相似文献   

8.
Browner RF  Dagnall RM  West TS 《Talanta》1969,16(1):75-81
Atomic-fluorescence measurements, with microwave-excited electrodeless discharge tubes as sources of excitation, are described for thallium and mercury. The limits of detection by atomic fluorescence are 0.12 ppm for thallium and 0.08 ppm for mercury; the corresponding limits by atomic absorption (using the same instrument and source) are 6 and 10 times as great. The preparation, operation and spectral characteristics of thallium and mercury discharge tubes are described and comparisons are made with a thallium hollow cathode lamp and thallium and mercury spectral discharge lamps.  相似文献   

9.
Sagi SR  Rao KA  Rao MS 《Talanta》1983,30(4):282-284
A simple, rapid and convenient redox method has been developed for the estimation of formic acid. Formic acid is photochemically oxidized with thallium(III) in the presence of bromide as catalyst, and the thallium(I) formed is determined by titration with potassium bromate. The procedure can also be used for the estimation of thallium(III) with formic acid as reductant.  相似文献   

10.
《Analytical letters》2012,45(4):175-183
Abstract

A study has been made of the method used for extracting the complex formed between thallium(III) and PhMBP. It has been demonstrated that thallium(III) can be readily extracted as a complex with PhMBP by organic solvents at low pH. The extraction of thallium(III) has been studied as a function of pH, concentration of reagent, nature of solvent, duration of contact of the phases and concentration of thallium(III). It has been established that thallium(III) forms a complex with PhMBP of the type MAn, where n=3. The stability constants and distribution constant of the neutral complex has been calculated by the method of Leden-Rydberg.  相似文献   

11.
A novel method is developed for the extraction separation of thallium(III) from salicylate medium with n-octylaniline dissolved in toluene as an extractant. The optimum conditions have been determined by making a critical study of weak acid concentration, extractant concentration, period of equilibration and effect of solvent on the equilibria. The thallium (III) from the pregnant organic phase is stripped with acetate buffer solution (pH 4.7) and determined complexometrically with EDTA. The method affords the sequential separation of thallium(III) from thallium(I) and also commonly associated metal ions such as Al(III), Ga(III), In(III), Fe(III), Bi(III), Sb(III) and Pb(II). It is used for analysis of synthetic mixtures of associated metal ions and alloys. The method is highly selective, simple and reproducible. The reaction takes place at room temperature and requires 15-20 min for extraction and determination of thallium(III).  相似文献   

12.
Chloride1), borohydrides2) and hydrides3) of dicyclopentadienyl thallium (III) and diindenyl thallium (III) have already been reported. The present communication deals with a study on the preparation and characterization of difluorenyl thallium (III) chloride, -hydride and -borohydride.  相似文献   

13.
A simple, sensitive and rapid spectrophotometric method was developed for the determination of thallium(III) using trifluoperazine hydrochloride (TFPH). The method is based on the oxidation of TFPH by thallium(III) in a phosphoric acid medium to form a red-colored radical cation with an absorption maximum at 505 nm. Beer's law is valid over the concentration range of 0.5 - 6.5 microg ml(-1) of thallium(III). The molar absorptivity and Sandell's sensitivity of the color system are 2.14 x 10(4) l mol(-1) cm(-1) and 0.0095 microg cm(-2), respectively. The optimum reaction conditions and other analytical parameters were evaluated. The tolerance limit of the method towards various ions usually associated with thallium has been studied. The proposed method has been successfully applied to the analysis of thallium in alloys, minerals, standard reference material, water, and urine samples.  相似文献   

14.
The enrichment ability of carbon nanotubes (CNTs) was investigated and a new method established for the determination of trace thallium species in environmental samples using electrothermal atomization-atomic absorption spectrometry (ETAAS). The CNTs were employed as sorbent substrate in a continuous flow system coupled to ETAAS. Parameters influencing the recoveries of thallium were optimized. Under optimal conditions, the detection limit and precision of the method were 0.009 µg L?1 and 3.9%, respectively. The method was applied to the determination of thallium in real environmental samples and the recoveries were in the range from 96 to 100%. This system was able to separate thallium (I) from the matrix, which allowed its selective determination. The total thallium content was then determined by reducing Tl(III) with hydroxylamine. All these experimental results indicated that this new procedure can be applied to the determination of trace thallium in drinking water samples.  相似文献   

15.
The anodic stripping voltammetric behaviour of the [TlBr4]-rhodamine B complex is described and compared with that of thallium(I) and thallium(III) ions. The electrolyte composition, the best potential for the deposition of thallium from the complex in the selected electrolyte, the duration of the electrolysis, and the possibility of reduction of thallium in the [TlBr4]-rhodamine B complex before the electrolysis with ascorbic acid were investigated. The results showed good reproducibility of the measurements of thallium as [TlBr4]-rhodamine B complex and are similar to those obtained for thallium as Tl(I) and Tl(III) ions. As the [TlBr4]-rhodamine B complex is strongly adsorbed on polyethylene, a previous preconcentration step on a column, packed with polyethylene powder, allowed the voltammetric determination of thallium as [TlBr4]-rhodamine B complex in samples of KCl and NaCl as solid salts after the separation of the matrix. With this procedure it was possible to reach enrichment factors of 25 with recoveries from 96.7 to 107.9% for thallium concentrations from 5 to 40 μg L–1 and RSD between 4.2 and 9.2%. The procedure was used to determine thallium traces in KCl and in sea salt. The results of these determinations were compared with the results obtained by graphite furnace atomic absorption spectrometry.  相似文献   

16.
A study has been made of the EPR spectra of Tl(l) and Tl(III) o-semiquinolates, obtained by the interaction of o-benzoquinones with thallium amalgam and thallium(III) diethyldithiocarbamate, respectively. A strong temperature dependence has been found for the constant of hyperfine coupling (HFC) with the metal nucleus in thallium(III) 3,5-di-tert-butyl-o-semiquinolate; this is explained by the presence of competing mechanisms of spin transfer from the o-semiquinone ligand to the metal. Cation exchange and effective complexation of the Tl(I) o-semiquinolate with thallium diethyldithiocarbamate have been observed. The kinetic parameters of exchange have been determined.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 786–790, April, 1990.  相似文献   

17.
The oxidation of 2-(3,4-dihydronaphthalen-1-yl)-ethanol (1) with a variety of thallium(III) salts was investigated. An indan, formed by a ring contraction reaction, was obtained in good to moderate yields under a variety of reaction conditions: i) thallium triacetate (TTA) in aqueous AcOH; ii) thallium tris-trifluoroacetate (TTFA) in aqueous TFA; iii) TTFA in CH(2)Cl(2); iv) thallium tripropionate (TTP) in aqueous propionic acid and v) thallium tris-[(S)-(-)-triacetoxypropionate] in aqueous (S)-(-)-2-acetoxypropionic acid. On the other hand, the reaction of compound 1 with TTA in methanol led to a 2:1 mixture of the corresponding cis- and trans-dimethoxylated compounds, respectively.These compounds were formed by a thallium-promoted addition of methanol to the double bond.  相似文献   

18.
The strong oxidising capacity of thallium(III) dominates its reaction with solutions of dithizone (H2Dz) in organic solvents. When carbon tetrachloride is used as solvent, the unstable thallium(III) complex Tl(HDz)3 is found in the organic phase but it very quickly disproportionates to the thallium(I) complex [Tl(HDz)], and bis-1,5-diphenylformazan-3-yl-disulphide. This reaction is notably faster in chloroform, in which thallium(I) dithizonate is the first identifiable product. In contact with an acidic aqueous phase, thallium(I) dithizonate is reverted to regenerate dithizone in the organic phase and Tl+ ions appear in the aqueous phase. Organic solutions of the disulphide disproportionate spontaneously by first-order kinetics to give an equimolar mixture of dithizone and the mesoionic compound, 2,3-diphenyl-2,3-dihydrotetrazolium-5-thiolate: this change is much slower in carbon tetrachloride than in the more polar chloroform and is catalysed by both Tl+ and Tl3+. If thallium(III) is present in excess, the mesoionic compound is the principal oxidation product of the dithizone although a dication may also be formed. The mesoionic compound does not react with thallium(I) but forms a water-soluble 2:1 complex with thallium(III); partition of this complex into the organic phase is uninfluenced by chloride ions. Because of the large number of competing reactions, the composition of the reaction mixture at any stage of the reaction between thallium(III) and dithizone depends on the relative concentrations of the components, the order in which they are brought together, the time elapsed after mixing, the pH of the aqueous phase, and the nature of the organic solvent.  相似文献   

19.
Trace amounts of thallium(I) can be determined using adsorptive cathodic stripping voltammetry in the presence of Xylenol Orange (XO). The reduction current of the thallium(I)-XO complex ion was measured by square-wave cathodic stripping voltammetry. The peak potential was at -0.44 V vs. Ag/AgCl. The effect of various parameters (pH, ligand concentration, accumulation potential and collection time) on the response are discussed. The response was linearly related to the thallium concentration in the range 0.5-110 ng ml(-1) and 110-2000 ng ml(-1). The limit of detection was 0.2 ng ml(-1). The relative standard deviation for the determination of 80 ng ml(-1) thallium was 2.8%. Many common anions and cations did not interfere with the determination of thallium. The interference of lead was reduced by the addition of 0.003 M sodium carbonate. The voltammetric procedure was then successfully applied to the determination of thallium in various complex samples.  相似文献   

20.
The anodic stripping voltammetric behaviour of the [TlBr4]-rhodamine B complex is described and compared with that of thallium(I) and thallium(III) ions. The electrolyte composition, the best potential for the deposition of thallium from the complex in the selected electrolyte, the duration of the electrolysis, and the possibility of reduction of thallium in the [TlBr4]-rhodamine B complex before the electrolysis with ascorbic acid were investigated. The results showed good reproducibility of the measurements of thallium as [TlBr4]-rhodamine B complex and are similar to those obtained for thallium as Tl(I) and Tl(III) ions. As the [TlBr4]-rhodamine B complex is strongly adsorbed on polyethylene, a previous preconcentration step on a column, packed with polyethylene powder, allowed the voltammetric determination of thallium as [TlBr4]-rhodamine B complex in samples of KCl and NaCl as solid salts after the separation of the matrix. With this procedure it was possible to reach enrichment factors of 25 with recoveries from 96.7 to 107.9% for thallium concentrations from 5 to 40 μg L–1 and RSD between 4.2 and 9.2%. The procedure was used to determine thallium traces in KCl and in sea salt. The results of these determinations were compared with the results obtained by graphite furnace atomic absorption spectrometry. Received: 5 February 1998 / Revised: 19 May 1998 / Accepted: 29 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号