首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed by a melt-compounding process (T-MFC-reinforced PP). The effects that the engineering process and the microfibrillation of the pulp had upon the dispersion and mechanical properties were investigated through tensile tests, rheological analysis and X-ray computed tomography. The bead-milling method enabled a uniform microfibrillation of the pulp to under 100 nm, which corresponded to a surface area of 133–146 m2/g for the pulp, found by the Brunauer–Emmett–Teller (BET) analysis. The T-MFC-reinforced PP with 30 wt% MFC content exhibited a tensile modulus of 5.3 GPa and a strength of 85 MPa, whereas the B-MFC-reinforced PP composites with the same content of MFC exhibited values of 4.1 GPa and 59.6 MPa, respectively. Rheological analysis revealed that the complex viscosity and storage modulus at 170 °C of T-MFC-reinforced PP with 30 wt% MFC content are 5–7 and 5–8 times higher than that of B-MFC-reinforced PP, respectively. This indicated that T-MFC was more dispersed in the PP than B-MFC. Therefore, T-MFC produced a more rigid interconnected network in the matrix during the melting state than B-MFC.  相似文献   

2.
This study evaluates the effects of nucleants phenylphosphonic acid zinc (PPA-Zn) and talc, mold temperature, and microfibrillated cellulose (MFC) reinforcement in the acceleration of injection molding cycle of polylactic acid (PLA). PLA was dissolved in an organic solvent, mixed with nucleant and MFC, and dried compounds were injection molded into molds at temperatures ranging from 40 °C to 95 °C and holding times from 10 s to 120 s. Our results showed that PPA-Zn is more effective nucleating agent compared to talc. The addition of 1 wt% PPA-Zn and the mold temperature of 95 °C exhibited the fastest crystallization rates for the molded PLA, however, at this temperature the parts could not be quickly ejected without distortion. Addition of 10 wt% MFC increased the stiffness of PLA at high temperatures and allowed ejection of parts without distortion at a holding time of just 10 s. At this holding time, the crystallinity of the PLA composite was 15.3% but the storage modulus above T g was superior to that of fully crystallized neat PLA due to MFC reinforcement, retaining the shape of the molded part during demolding. The mechanical properties of the composite at room temperature were also higher than those of fully crystallized neat PLA.  相似文献   

3.
Optical microscopy and transmission electron microscopy have been used to investigate the morphology of polylactide (PLA)/microfibrillated cellulose (MFC) composites prepared by: compression molding of wet-comingled MFC and PLA latex or powder, twin-screw extrusion of the wet-comingled compounds, and solvent mixing of PLA with MFC or acetylated MFC. Compression molding of wet-comingled MFC and PLA latex or powder compounds resulted in a cellular MFC network, whereas solvent-cast films showed a more uniform dispersion of MFC fibers. Somewhat lower aggregate diameters observed in the acetylated MFC were assumed to be due to decreased MFC hydrophilicity and improved chemical affinity with the PLA matrix. The MFC networks in the commingled compounds were severely disrupted after twin-screw extrusion. This confirmed the limited deformability of the networks inferred from the extensive syneresis during the initial compression molding step, and accounted for substantial losses in stiffness reinforcement by the MFC after extrusion.  相似文献   

4.
High strength and low gas permeability cellulosic composites were produced using the papermaking technology with a commercial microfibrillated cellulose (MFC). The effect of blending MFC with hardwood fibers was compared to the direct refining of the fibers with and without polyamideamine-epichlorohydrin (PAE) addition. The addition of MFC, free or tethered, to pulp fibers combined with PAE can increase the dry strength and wet strength of cellulosic materials by an order of magnitude. Air permeability of the composites decreases by up to orders four of magnitude with MFC addition. The hypothesis that refining wood fibers can produce tethered MFC which provides equivalent strength properties but significant drainage benefits was proven. Furthermore, major benefits in paper formation uniformity (fiber distribution homogeneity) were achieved with refined fibers.  相似文献   

5.
6.
The poly(lactic acid) (PLA)/montmorillonite (MMT) composites were prepared by melt blending in an internal mixer. The effect of MMT and organically modified MMT (OMMT) addition on crystallization and mechanical preferences has been studied. The DSC results show that the crystallization ability of PLA is improved by MMT or OMMT. The addition of MMT and OMMT increase the crystallinity of PLA from 27.3 to 32.8%, and the cold crystallization temperature (TCC) of PLA decreases from 93.1 to 88.9°C with the MMT. However, the nucleating effect of MMT is better than that of OMMT due to the velvety surface resulted from the organic modification. The average size of the spherulites in PLA/MMT is smaller than that in PLA/OMMT. The addition of MMT or OMMT increases the tensile strength of PLA from 29.6 to 34.7 MPa and decrease the elongation at break of PLA. The modulus of PLA composites is enhanced rapidly from 338 to 660 MPa by the addition of MMT.  相似文献   

7.
We produced triglyceride-in-water emulsions comprising semicrystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. In these systems, partial (unrelaxed) coalescence could be produced by a thermal treatment referred to as tempering or by the application of a shear. Both primary emulsions and thermally induced gels were submitted to shear strains of variable amplitude, and the resulting transitions were identified. Partial or total destruction of the materials took place and was revealed by the formation of macroscopic clumps. We examined the impact of the initial average droplet size and of the interface composition (controlled by the bulk surfactant-to-protein molar ratio) on the sensitivity to partial coalescence. The evolution under shear occurred via two limiting mechanisms, depending on the susceptibility to partial coalescence. Materials that exhibited fast partial coalescence underwent gelling followed by phase inversion and partial expulsion of the aqueous phase. Alternatively, when the rate of partial coalescence was quite low, large clumps were randomly distributed over the volume and coexisted with a fluid emulsion. The same phenomenology was observed under both oscillatory and steady shear conditions. Interestingly, in oscillatory conditions, clumping was observed above a very well-defined and reproducible value of the strain amplitude independent of the initial state of the system (emulsion or gel).  相似文献   

8.
9.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Novel high-strength, micro-fibrillated cellulose (MFC)-reinforced polypropylene (PP) composites were prepared using maleic anhydride polypropylene (MAPP) and a cationic polymer having a primary amino group (CPPA) as coupling agents. Un-dried kraft pulp was micro-fibrillated into nano- to submicron-wide fibrils by kneading with powdered PP and the coupling agents via a twin-screw extruder. The composites were prepared by injection molding. The MFC-reinforced PP composites containing both coupling agents MAPP and CPPA (combination system) showed extremely high mechanical strength compared with the MFC-reinforced composite containing only MAPP. The tensile strength of a 30 wt% MFC-PP composite containing the combination system was 27 % higher than that of the composite containing only MAPP, and more than 60 % higher than that of neat PP. In addition, the heat distortion temperature, under a 1.82-MPa flexural load, of the composite with the combination system was 17 °C higher than that of the composite with MAPP only, and 34 °C higher than that of neat PP. The anisotropy of the modulus and strength in the injection-molded MFC composites was lower than that of glass fiber-reinforced PP.  相似文献   

11.
Spreading of partially crystallized oil droplets on an air/water interface   总被引:3,自引:0,他引:3  
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for β-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (ΠAW) at the point of spreading; ΠAW at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 °C, but not for those measured at 22 or 37 °C. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process.  相似文献   

12.
A fully bleached birch kraft pulp was treated with acidic hydrogen peroxide in the presence of ferrous ions (Fenton’s reagent) and thereafter treated mechanically in a colloid mill to produce a product containing microfibrillated cellulose (MFC). The produced MFC products were chemically and morphologically characterized and compared with MFC products produced without pretreatment as well as with enzymatic hydrolysis. Fenton treatment resulted in an increase in total charge and number of carbonyl groups while the intrinsic viscosity decreased. The Fenton treated pulps were easier to process mechanically i.e. they reached a higher specific surface area at a given mechanical treatment time and the MFC produced had a stable water-fibre suspension for at least 8 weeks compared to enzymatic pretreated pulps and pulps not subjected to any pretreatment.  相似文献   

13.
The preparation of carboxymethylated microfibrillated cellulose (MFC) films by dispersion-casting from aqueous dispersions and by surface coating on base papers is described. The oxygen permeability of MFC films were studied at different relative humidity (RH). At low RH (0%), the MFC films showed very low oxygen permeability as compared with films prepared from plasticized starch, whey protein and arabinoxylan and values in the same range as that of conventional synthetic films, e.g., ethylene vinyl alcohol. At higher RH’s, the oxygen permeability increased exponentially, presumably due to the plasticizing and swelling of the carboxymethylated nanofibers by water molecules. The effect of moisture on the barrier and mechanical properties of the films was further studied using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. The influences of the degree of nanofibrillation/dispersion on the microstructure and optical properties of the films were evaluated by field-emission scanning electron microscopy (FE-SEM) and light transmittance measurements, respectively. FE-SEM micrographs showed that the MFC films consisted of randomly assembled nanofibers with a thickness of 5–10 nm, although some larger aggregates were also formed. The use of MFC as surface coating on various base papers considerably reduced the air permeability. Environmental scanning electron microscopy (E-SEM) micrographs indicated that the MFC layer reduced sheet porosity, i.e., the dense structure formed by the nanofibers resulted in superior oil barrier properties.  相似文献   

14.
Biodegradable PLA composites were prepared using microcrystalline cellulose (MCC) and silver (Ag) nanoparticles. The main objective of the present study is to develop new biopolymer composites with good mechanical properties, thermal stability, maintaining the optical transparency and also providing antimicrobial properties through silver nanoparticle introduction. Composites were prepared with 1%wt of Ag nanoparticles and 5%wt of MCC using a twin-screw microextruder; film parameters were optimized in order to obtain a thickness range between 20 and 60 μm.PLA composites maintained optical transparency properties of the matrix, while MCC was able to reduce polymer permeability. Thermal analysis revealed that MCC increased PLA crystallinity and the mechanical properties of the composites demonstrated that tensile modulus was improved by microcrystalline cellulose.  相似文献   

15.
Song  Xueyang  Fang  Cuicui  Li  Yuanyuan  Wang  Ping  Zhang  Yan  Xu  Yukang 《Cellulose (London, England)》2022,29(2):835-848

Although jute fiber-reinforced PLA composites show strong application prospects, their low mechanical properties limit their applications to some extent. In this paper, nano-SiO2 particles as well as nano SiO2 modified by coupling agents which can efficiently improve the strength and toughness of composite materials are introduced into the PLA matrix. The bending, stretching and thermal properties of designed jute/PLA nonwoven composites were studied. The study shows that the nano-SiO2 particles are beneficial to the interface performance between the PLA matrix and jute leading to improvement in the mechanical properties and thermal stability. Moreover, thermomechanical properties indicate that the addition of SiO2 can improve the jute/PLA interfacial adhesion and increase the glass transition temperature of the material. Finally, toughening mechanism of nano-SiO2 particles in the jute/PLA composite was analyzed.

  相似文献   

16.
A study of the impact behaviour and the post-impact residual strength of fully biodegradable composites is presented in this work. To this end, low-velocity impact tests and compressive residual strength tests were carried out on flax/PLA laminates. The results were compared with carbon/epoxy laminates, showing some important advantages in terms of absorbed energy and normalized residual strength. The reason was attributed to different energy absorption mechanisms; the main failure mode in flax/PLA laminates is fibre failure while residual strength of carbon/epoxy laminates is dominated by delaminations.  相似文献   

17.
Starting from calcium sulfate (gypsum) as fermentation by‐product of lactic acid production process, high performance composites have been produced by melt‐blending polylactide (PLA, L/D isomer ratio of 96:4) and β‐anhydrite II (AII) filler, that is, calcium sulfate hemihydrate previously dehydrated at 500 °C. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting for potential use as biodegradable rigid packaging. Physical characterization of selected composites filled with 20 and 40 wt % AII has been performed and compared to processed unfilled PLA with similar amorphous structure. State of dispersion of the filler particles and interphase characteristic features have been investigated using light microscopy (LM) and scanning electron microscopy (SEM). Addition of AII did not decrease PLA thermal stability as revealed by thermogravimetry analyses (TGA) and allowed reaching a slight increase of PLA crystallizability during melt crystallization and upon heating from the glassy, amorphous state (DSC). It was found by thermomechanical measurements (DMTA) that the AII filler increased pronouncedly storage modulus (E′) of the composites in comparison with PLA in a broad temperature range. The X‐ray investigations showed stable/unchanged crystallographic structure of AII during processing with molten PLA and in the composite system. The notable thermal and mechanical properties of PLA–AII composites are accounted for by the good filler dispersion throughout the polyester matrix confirmed by morphological studies, system stability, and favorable interactions between components. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2770–2780, 2007  相似文献   

18.
The dielectric relaxation process of water was investigated for polymer/water mixtures containing poly(vinyl methyl ether), poly(ethyleneimine), poly(vinyl alcohol), and poly(vinylpyrrolidone) with a polymer concentration of up to 40 wt % at frequencies between 10 MHz and 10 GHz in subzero temperatures down to -55 degrees C. These polymer/water mixtures have a crystallization temperature TC of water at -10 to -2 degrees C. Below TC, part of the water crystallized and another part of the water, uncrystallized water (UCW), remained in a liquid state with the polymer in an uncrystallized phase. The dielectric relaxation process of UCW was observed, and reliable dielectric relaxation parameters of UCW were obtained at temperatures of -26 to -2 degrees C. At TC, the relaxation strength, relaxation time, and relaxation time distribution change abruptly, and their subsequent changes with decreasing temperature are larger than those above TC. The relaxation strength of UCW decreases, and the relaxation time and dynamic heterogeneity (distribution of relaxation time) increase with decreasing temperature. These large temperature dependences below TC can be explained by the increase in polymer concentration in the uncrystallized phase C(p,UCP) with decreasing temperature. C(p,UCP) is independent of the initial polymer concentration. In contrast to the relaxation times above TC, which vary with the chemical structure of the polymer and its concentration, the relaxation times of UCW are independent of both of them. This indicates that the factor determining whether the water forms ice crystals or stays as UCW is the mobility of the water molecules.  相似文献   

19.
This paper presents a new method for a rapid determination of the Avrami exponentn by nonisothermal thermoanalytic analysis (DSC and DTA, resp.). Contrary to conventional techniques this method can be used in the entire temperature range and therefore it is applicable to polymers crystallizing from the melt. The proposed technique is applied to injection moulded low density polyethylene (LDPE), injection moulded high density polyethylene (HDPE), unpigmented extruded polypropylene (PPunpigm.) and pigmented extruded polypropylene (PPpigm.). The resulting values for the Avrami exponentsn LDPE~2.9,n HDPE~1.3, \(n_{PP_{unpigm} }\) ~2.2 and \(n_{PP_{pigm} }\) ~ 2.1 derived by crystallization from the melt were compared with isothermal measurements and with results given by other authors.  相似文献   

20.
Eight compatibilizing agents were studied to investigate their effect on the quality of the interface between a phosphate glass fiber and a poly(lactic acid) (PLA) matrix. After application of the agents via dip‐coating, the fibers were Soxhlet extracted to remove any unreacted compatibilizer. To assess the interface quality, single fiber tensile tests of treated fibers and interfacial shear strengths (IFSS) of single fiber composites (SFC) were assessed. Of the agents tested, Glycerol‐2‐phosphate disodium pentahydrate (GP) and low molecular weight PLA with a sodium salt terminal group (PLA‐Na) showed the highest IFSS values, which were significantly higher than those of the control. Oligomeric PLA with a carboxylic acid end group and alendronate sodium trihydrate also showed an improvement over the control fibers. The hydrolytic degradation of these single fiber composites was studied over 7 days in water at 37 °C and a significant decrease in IFSS was observed in all cases, with the treated samples dropping to the level of the control. TGA and XPS analysis of the sized fibers showed that GP and PLA‐Na had been applied successfully to the fiber surface. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3082–3094, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号