首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Carbon nanomaterials with metal grids were used as transparent conductive electrodes for liquid crystal displays (LCDs) to develop an indium tin oxide (ITO)-free device. We prepared LCDs with CNTs and graphene electrodes; however, the working voltage of the device with the CNT electrodes was high. The device with graphene electrodes had good performance, but not as good as devices with ITO electrodes. To improve the device performance, we applied a metal grid to the carbon nanomaterial to create low sheet-resistance transparent electrodes. The device with the graphene and metal grid transparent electrodes had a threshold voltage as low as 0.23 V/µm, which is similar to that of typical LCDs with ITO electrodes. The results show that a hybrid transparent conductive film with graphene and metal grid could be an alternative to ITO for developing ITO-free LCDs.  相似文献   

2.
All-solid-state ion-selective electrodes with plastic membrane (poly(vinyl chloride) (PVC), bis(2-ethylhexyl) sebacate (DOS), methyltri-n-tetradecylammonium chloride (MTTACl)), a conducting poly(pyrrole) (PPy) film doped either with chloride ions (PPyCl) or hexacyanoferrate(II) ions (PPyFeCN), and glassy carbon (GC) or screen-printed graphite layer (S-PG) as an inner electric contact were investigated. All the electrodes show close to Nernstian response, but their lifetimes vary. The at least 2-months lifetime of screen-printed electrodes is only achieved for the electrodes containing PPyFeCN (cation-exchanging film). Shorter lifetime of other screen-printed electrodes, i.e. without PPy, or with PPyCl (anion-exchanging film), was attributed to the diffusion of anionic products of the hydrolysis of organic components of the graphite paste used to prepare the electric contact. The properties of miniature, screen-printed electrodes comprising PPyFeCN solid contact, were comparable to those ion-selective electrodes with PPy solid contact (regardless the ion-exchanging characteristic of the polymer) deposited on GC electric contact.  相似文献   

3.
New amineptine hydrochloride (Am-Cl) ion-selective electrodes (conventional type) based on amineptinium-tetraphenylborate (I) and amineptinium-phosphomolybdate (II) were prepared. The electrodes exhibited mean slopes of calibration graphs of 57.9?mV and 53.8?mV per decade of (Am-Cl) concentration at 25?°C for electrodes (I) and (II), respectively. The electrodes can be used within the concentration range 3.16×10?5?10?2?M (Am-Cl) at a pH range of 2.0–3.9 for both electrodes. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficients of the electrodes, which were 0.00172?V?°C?1 and 0.00091 V?°C?1 for (I) and (II) electrodes, respectively. The electrodes showed a very good selectivity for (Am-Cl) with respect to a number of inorganic cations and sugars. The standard addition method is successfully applied to determine (Am-Cl) in pure solutions and in amineptine-containing tablets.  相似文献   

4.
Multiple electrodes, combined with a chemometric strategy to calibrate the measurement response, have been used for the determination of an analyte across a broader dynamic range than is possible with a single electrode. The model system used for the detection of copper comprised electrodes modified with a self-assembled monolayer. The electrodes were modified with the copper-complexing species (3-mercaptopropionic acid, thioctic acid, and the peptides cysteine and Gly-Gly-His) and copper was determined over concentrations ranging from nanomolar to millimolar using voltammetric analysis. We have demonstrated that by combining the calibration functions from the four electrodes a better estimate (i.e. with smaller variance) of the concentration of the analyte is obtained. Measurement uncertainty is expressed for independently prepared electrodes, which allows the possibility of commercial production and factory calibration. The principles of using multiple electrodes modified with recognition elements with different affinities for the target analyte to extend the dynamic range of sensors is a general one that could be applied to other analytes.  相似文献   

5.
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 microm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1)(or k(mt) > 1.0 cm s(-1)) are observed at 50 microm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 microm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 microm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.  相似文献   

6.
The flow injection amperometric performance of solid composite graphite electrodes with ethylene/propylene/diene (EPD) or Teflon as binding agents, and with Ru or RuO2 particles as electrocatalytic modifiers has been compared. Both, Ru and RuO2 modified electrodes exhibited electrocatalytic properties on the methionine oxidation process in alkaline media. The electrodes composition and the hydrodynamic and chemical variables were optimized. Graphite-EPD (GEPD) electrodes showed a better analytical performance than graphite-Teflon (GPTFE) electrodes. Furthermore, a better sensitivity, repeatability and reproducibility was observed for RuO2-GEPD electrodes when compared with Ru-GEPD electrodes. At an applied potential of +0.50 V, a detection limit for methionine of 4.8x10(-5) mol L(-1), similar to those reported in the literature for other RuO2-modified electrodes, was obtained. The analytical applicability of RuO2-GEPD electrodes was demonstrated by determining methionine in a complex pharmaceutical formulation.  相似文献   

7.
Nafion-coated bismuth film electrodes (NCBFEs) and Nafion-coated mercury film electrodes (NCMFEs) were used to electrochemically preconcentrate metal analytes for subsequent analysis by inductively coupled plasma-mass spectrometry (ICP-MS). Either type of electrodes is part of a thin-layer electrochemical flow cell that is positioned upstream of a microconcentric nebulizer for the ICP-MS. Performances of these electrodes were compared in terms of the analytical "figures of merit" (e.g., dynamic ranges, reproducibility, hydrodynamic stability, and elimination of matrix effects detrimental to ICP-MS). The coupled technique (ASV-ICP-MS) is found to possess a wide dynamic range (at least 4 to 5 orders of magnitude) and to be reproducible. Both electrodes are much more stable than the thin mercury film electrode (TMFE) traditionally used for ASV-ICP-MS, with the lifetime of the NCBFE exceeding 8 h. Adopting these electrodes for ASV-ICP-MS overcomes the problems associated with a TMFE, the erosion of which decreases the sample throughput, affects the analysis precision, and contaminates conventional glass nebulizers and spray chambers of the spectrometer. The medium exchange procedure inherent in ASV is successfully implemented with a two-valve flow injection system for the accumulation of trace Cd2+ into the electrode from a certified seawater sample, followed by stripping Cd into a solution that is compatible to the ICP-MS operation.  相似文献   

8.
A transflective polymer-stabilised blue-phase liquid crystal display (BP-LCD) with alternate electrodes is proposed. The alternate electrodes are composed of right triangle electrodes and slanted electrodes. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, the legs of the right triangle electrodes in the T region generate uniform horizontal electric field, the hypotenuses of the right triangle electrodes and slanted electrodes in the R region generate uniform oblique electric field. As result, the T and R regions obtain the same optical phase retardation. This display exhibits reasonably high transmittance, low operating voltage, wide viewing angle and well-matched voltage-dependent transmittance and reflectance curves.  相似文献   

9.
A blue-phase liquid crystal displays (BP-LCDs) with slit-shaped pixel and common electrodes structure is proposed to increase the transmittance. It generates not only in plane field between the pixel electrodes, but also fringe field above the common electrodes. As a result, the high transmittance is obtained. The aperture ratio is also improved because of the capacitor between the pixel and common electrodes.  相似文献   

10.
Teresa Łuczak 《Electroanalysis》2009,21(13):1539-1549
Gold nanoparticles (Au‐NPs), cystamine (CA) and 3,3′‐dithiodipropionic acid (DTDPA) modified gold bare electrodes were applied in voltammetric sensors for simultaneous detection of norepinephrine (NEP), ascorbic (AA) and uric (UA) acids. A linear relationship between norepinephrine concentration and current response was obtained in the range of 0.1 μM to 600 μM M with the detection limit ≤0.091 μM for the electrodes modified at 2D template and in the range of 0.1 μM to 700 μM M with the detection limit ≤0.087 μM for the electrodes modified at 3D template The results have shown that using modified electrodes it is possible to perform electrochemical analysis of norepinephrine without interference of ascorbic and uric acids, whose presence is the major limitation in norepinephrine determination at a bare gold electrode. The modified SAMs electrodes show good selectivity, sensitivity, reproducibility and high stability.  相似文献   

11.
Copper selenide (of the type Cu2-xSe) film electrodes, prepared by combined electrochemical (ECD) followed by chemical bath deposition (CBD), may yield high photo-electrochemical (PEC) conversion efficiency (∼14.6%) with no further treatment. The new ECD/CBD-copper selenide film electrodes show enhanced PEC characteristics and exhibit high stability under PEC conditions, compared to the ECD or the CBD films deposited separately. The electrodes combine the advantages of both ECD-copper selenide electrodes (in terms of good adherence to FTO surface and high surface uniformity) and CBD-copper selenide electrodes (suitable film thickness). Effect of annealing temperature, on the ECD/CBD film electrode composition and efficiency, is discussed.  相似文献   

12.
The paper describes the determination of tin by ASV using modified thick film electrodes. Three different types of electrodes were developed: One modified with a mixture of Nafion and mercury(II)acetate, one modified with diethyldithiocarbamate (DDC) or pyrrolidinedithiocarbamate (PDC) and mercury(II)acetate, and one modified with calomel. The analyte was accumulated on the electrode surface after special electrochemical pretreatment of the modified electrode. After recording the voltammogram the electrodes were electrochemically regenerated. By virtue of their lifetime and their measurement reproducibility, we preferred the DDC and PDC modified electrodes. They can be used for months without changing their chemical characteristics. The linear range for tin determination with these electrodes is between 1 and 100 μg/L; the detection limit was calculated as 0.9 μg/L. The electrodes were applied to the direct determination of tin in different canned fruit juices without special sample pretreatment. Received: 20 December 1996 / Revised: 11 March 1997 / Accepted: 13 March 1997  相似文献   

13.
Fabrication of high-performance organic thin film transistors (OTFTs) with solution processed organic charge transfer complex (TTF-TCNQ) film as bottom contact source-drain electrodes is reported. A novel capillary based method was used to deposit the source-drain electrodes from solution and to create the channel between the electrodes. Both p- and n-type OTFTs have been fabricated with solution deposited organic charge transfer film as contact electrodes. Comparison of the device performances between OTFTs with TTF-TCNQ as source-drain electrodes and those with Au electrodes (both top and bottom contact) indicate that better results have been obtained in organic complex film contacted OTFT. The high mobility, low threshold voltage, and efficient carrier injection in both types of OTFTs implies the potential use of the TTF-TCNQ based complex material as low-cost contact electrodes. The lower work function of the TTF-TCNQ electrode and better contact of the complex film with the organic thin film owing to the organic-organic interface results in efficient charge transfer into the semiconductor yielding high device performance. The present method having organic metal as contact materials promises great potential for the fabrication of all-organics and plastic electronics devices with high throughput and low-cost processing.  相似文献   

14.
高泉涌  张静  杨勇 《电化学》2005,11(1):87-91
本文提出一种改进的氧化铝模板法制备碳纳米管阵列电极:首先结合气相化学沉积和磁控溅射在氧化铝模板中制得碳纳米管阵列电极,然后用HF溶液将沉积了碳纳米管的氧化铝模板阻挡层除去,控制溶出时间即可得到不同溶出长度的碳纳米管阵列电极.循环伏安测试表明,锂离子在该阵列电极中的嵌入脱出反应主要发生在碳纳米管的端口处.此外,还应用固定频率交流阻抗法,研究了不同溶出时间的碳纳米管阵列电极的电容性质.  相似文献   

15.
Electrodes have been developed for the assay of glucose, urea, amino acids, uric acid, phosphate, nitrate and perchlorate. The electrodes for the organic compounds are enzyme electrodes which are prepared by chemically immobilizing an enzyme over the outside of a conventional ion-selective electrode. These electrodes will be discussed in depth. The progress and the development of the electrodes that show sensitivity and selectivity for phosphate, nitrate and perchlorate will be outlined. The basis of these sensors is a complex of a transition metal of either an analog of thiourea or an organic chelator, such as 1,10-phenanthraline. Such electrodes respond linearly to phosphate, nitrate or perchlorate, and show selectivity over sulphate, halides and acetate. The linear range of all these electrodes is approx. 10(-1)-10(-5) M with a near Nernstian slope and a reproducibility of 1%. The electrodes are stable and can be used continuously.  相似文献   

16.
The paper describes the determination of tin by ASV using modified thick film electrodes. Three different types of electrodes were developed: One modified with a mixture of Nafion and mercury(II)acetate, one modified with diethyldithiocarbamate (DDC) or pyrrolidinedithiocarbamate (PDC) and mercury(II)acetate, and one modified with calomel. The analyte was accumulated on the electrode surface after special electrochemical pretreatment of the modified electrode. After recording the voltammogram the electrodes were electrochemically regenerated. By virtue of their lifetime and their measurement reproducibility, we preferred the DDC and PDC modified electrodes. They can be used for months without changing their chemical characteristics. The linear range for tin determination with these electrodes is between 1 and 100 μg/L; the detection limit was calculated as 0.9 μg/L. The electrodes were applied to the direct determination of tin in different canned fruit juices without special sample pretreatment. Received: 20 December 1996 / Revised: 11 March 1997 / Accepted: 13 March 1997  相似文献   

17.
The application of amalgam electrodes for measuring the degree of complexation of metal ions is described with respect to natural water conditions. The amalgam electrodes are compared with the corresponding capabilities of ion-selective electrodes. A special cell is described for preparing the amalgam and for filling a hanging amalgam drop electrode. Factors affecting the reproducibility of the standard potentials and slopes, the response time and detection limits are discussed. Complexation measurements are described with lead and zinc amalgam electrodes. Triethylenetetramine, carbonate and nitrolotriacetic acid are used as ligands, to test the ability of these electrodes to measure correctly8 the degree of complexation even at low total-metal. concentrations (down to ca. 10?7 M) and at very low concentrations of free metal ion (10?15 M). Results obtained with well-characterized fulvinc compound and an algal culture medium (AAP) are also reported. The observed results are in compl;ete accordance with theoretical predictions (based on Nernstian behaviour), evven at the lowest concentrations of tltal and free metal ion used. An important limitation is that any oxidant in the solution can interfere by oxidizing the amalgma. Solutions must be carefully degassed to eliminate oxygen. It is shown that the interfering actin of oxidants can be corrected for by means of equations which are theoretically sound, even when the nature of the oxidant is unknown, provided that its content is not too high. Compared to ion-selective electrodes, amalgam electrodes are more reproducible, inexpensive and readily prepared for various metal ions which cannot be measured with ion-selective electrodes.  相似文献   

18.
The potentiometric anion selectivity of two polymer membrane based electrodes (I and II) formulated with two new cyclopalladated amine complexes as the active components are examined. The electrodes exhibit a non-Hofmeister selectivity pattern with a significantly enhanced response towards thiocyanate, iodide and nitrite. The graph potential versus log c is linear over the concentration range 10(-6)-6x10(-2) M thiocyanate with electrode I and 10(-6)-10(-3) M with electrode II; 10(-5)-10(-2) M iodide with electrode I and 10(-3)-6x10(-2) M with electrode II; and 10(-3)-6x10(-2) M nitrite with both electrodes. The influence of the plasticizer and pH are studied. The potentiometric selectivity coefficients for I, II and blank membrane electrodes are reported. The selective interaction between Pd(II) thiocyanate, iodide and nitrite is postulated to be the reason for its higher response.  相似文献   

19.
The analytical performance of amperometric microcells with different electrode geometries is compared for enzyme activity measurements. The microcells were fabricated with thin film photolithography or thick film screen-printing in four different designs. The cells made with the thin film process used flexible substrate with microelectrode array or a circular, disk-shaped working electrode. The screen-printed working electrodes had semicircle or disk shape on ceramic chips. Putrescine oxidase (PUO) activity measurement was used as a model. The determination of PUO activity is important in the clinical diagnosis of premature rupture of the amniotic membrane. An electropolymerized m-phenylenediamine size-exclusion layer was used to eliminate common interferences. The size exclusion layer revealed also to be advantageous in protecting the electrodes from fouling by putrescine (enzyme substrate). The electrode fouling of bare electrodes was insignificant for screen-printed electrodes, but very severe for electroplated platinum working electrodes. The microelectrode array electrodes demonstrated smaller RSD and higher normalized sensitivities for hydrogen peroxide and PUO activity. All the other electrodes were demonstrating comparable analytical performances.  相似文献   

20.
New chlordiazepoxide hydrochloride (Ch-Cl) ion-selective electrodes (conventional type) based on ion associates, chlordiazepoxidium-phosphomolybdate (I) and chlordiazepoxidium-phosphotungstate (II), were prepared. The electrodes exhibited mean slopes of calibration graphs of 59.4 mV and 60.8 mV per decade of (Ch-Cl) concentration at 25 degrees C for electrodes (I) and (II), respectively. Both electrodes could be used within the concentration range 3.16 x 10(-6)-1 x 10(-2) M (Ch-Cl) within the pH range 2.0-4.5. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficients of the electrodes, which were 0.00139 and 0.00093 V degrees C(-1) for electrodes (I) and (II), respectively. The electrodes showed a very good selectivity for Ch-Cl with respect to the number of inorganic cations, amino acids and sugars. The electrodes were applied to the potentiometric determination of the chlordiazepoxide ion and its pharmaceutical preparation under batch and flow injection conditions. Also, chlordiazepoxide was determined by conductimetric titrations. Graphite, copper and silver coated wires were prepared and characterized as sensors for the drug under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号