首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Based on both the spin diffusion equation and the Landau-LlTshitz-Gilbert (LLG) equation, we demonstrate the influence of out-of-plane spin torque on magnetization switching and susceptibility in a magnetic multilayer system. The variation of spin accumulation and local magnetization with respect to time are studied in the magnetization reversal induced by spin torque. We also research the susceptibility subject to a microwave magnetic field, which is compared with the results obtained without out-of-plane torque.  相似文献   

2.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

3.
Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.  相似文献   

4.
The observed tunneling magnetoresistance (TMR) effect in La0.9Ba0.1MnO3 (LBMO)/Nb-doped SrTiO3 (Nb-STO) p+-n junctions is investigated and a possible mechanism responsible for the TMR generation is proposed by taking into account the dynamic spin accumulation and paramagnetic magnetization in the Nb-STO layer. Because of carrier diffusion across the dynamic domain boundaries in the Nb-STO layer and spin disordering in the LBMO layer, the tunneling resistance through the junction is high at zero magnetic field. The spin disordering is suppressed upon applying a non-zero magnetic field, which results in the spin-polarized tunneling in this ferromagnetic/depletion layer/dynamic ferromagnetic sandwiched structure and thus the observed TMR effect. The dependence of the TMR effect on the domain size in the LBMO layer, the tunneling current and temperature as well is explained, qualitatively consistent with the experimental observation.  相似文献   

5.
利用漂移扩散理论研究了磁性pn结中自旋的输运特性.探讨了外加电压、平衡自旋极化率、外加自旋注入和自旋寿命对磁性pn结电流密度和电阻的影响,讨论了磁性pn结自旋伏特效应与pn结宽度的关系.发现平衡自旋极化率使得不同自旋方向电子具有不同的势垒高度从而能有效调制电流;而外加自旋注入则为磁性pn结提供了非平衡自旋极化电子从而达到对电流的调制作用,同时发现自旋伏特电流随准中性p区宽度减小而增大. 关键词: 磁性pn结 自旋极化率 自旋寿命 自旋伏特效应  相似文献   

6.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

7.
In this paper, spin-dependent transport through a spin diode composed of a quantum dot coupled to a normal metal and a ferromagnetic lead is studied. The current polarization and the spin accumulation are analyzed using the equations of motion method within the nonequilibrium Green’s function formalism. We present a suitable method for computing Green’s function without carrying out any self-consistent calculation. The influence of coupling strength and magnetic field on the spin current is studied and observed that this device cannot work as a spin diode under certain conditions.  相似文献   

8.
The Enskog-Landau kinetic equation is considered to describe non-equilibrium processes of a mixture of charged hard spheres. This equation has been obtained in our previous papers by means of the non-equilibrium statistical operator method. The normal solution of this kinetic equation found in the first approximation using the standard Chapman-Enskog method is given. On the basis of the found solution the flows and transport coefficients have been calculated. All transport coefficients for multicomponent mixture of spherical Coulomb particles are presented analytically for the first time. Numerical calculations of thermal conductivity and thermal diffusion coefficient are performed for some specific mixtures of noble gases of high density. We compare the calculations with those ones for point-like neutral and charged particles. Received 10 June 1999 and Received in final form 15 October 1999  相似文献   

9.
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density.  相似文献   

10.
Tunneling current in a ferromagnet/superconductor/ferromagnet double tunnel junction induces a nonequilibrium spin accumulation in the superconductor. We study theoretically the response of such a system to applied magnetic field. We show that the interplay between the magnetic field and the spin accumulation could lead to novel bias voltage dependence and magnetic field dependence of the superconducting gap function, and bring in anomalous asymmetry in the spin-dependent transport. Our study also indicates a possible application of the spin injection.  相似文献   

11.
王方原  李桂琴 《中国物理 B》2016,25(7):77304-077304
The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S–Au–S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au–Au–Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au–Au–Au junction may transform information between distance, bias,and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.  相似文献   

12.
A Gaussian type spin-polarized electronic wave packet is constructed to investigate the spin transport behaviour in an infinite two-dimensional electron gas system with Rashba spin--orbit (SO) interaction by solving the Schrödinger equation exactly. In the presence of Rashba SO interaction, the spin-dependent force induces a momentum dependent splitting of the two spin directions, the average spin current indicates the corresponding spin accumulation clearly. Furthermore, the coherence of the injected spin-polarized wave packet, as well as the transverse force, decays during the motion in the Rashba SO regime.  相似文献   

13.
量子点双链中电子自旋极化输运性质   总被引:1,自引:0,他引:1       下载免费PDF全文
安兴涛  穆惠英  咸立芬  刘建军 《物理学报》2012,61(15):157201-157201
利用非平衡格林函数方法, 研究了与单个量子点耦合的量子点双链中电子自旋极化输运性质. 由于系统中Rashba自旋轨道耦合产生的自旋相关的相位, 电子通过上下两种路径时, 自旋不同的电子干涉情况不同, 从而导致了电极中的自旋极化流. 左右两电极间的偏压使单个量子点中的自旋积聚在很大能量区域内能够保持较大的值. 由于系统结构的左右不对称, 正负偏压下自旋积聚情况完全不同. 这些计算结果将有助于实验上设计新型的自旋电子学器件.  相似文献   

14.
The pure spin transport in an entire metallic single-wall carbon-nanotube (SWCN) interacting quantum dot (QD) system is investigated by using non-equilibrium Green's function (NEGF) technique. The novel spin current performance introduced by one constant and one rotating magnetic fields shows the unique four-fold degenerate electron shell structure which exists the SWCN QD sensitively. Spin transport properties can be designed by tuning the orbital and Zeeman configuration in the central resonant region, which are greatly influenced by the Coulomb interaction and the magnetic fields.  相似文献   

15.
Spin-polarized transport through a non-interacting single-level quantum dot coupled to two ferromagnetic leads with non-collinear magnetizations is analyzed theoretically by the non-equilibrium Green function technique. It is shown that spin of an electron that has tunnelled on the dot precesses around an effective exchange field before it leaves the dot. The exchange field originates from interaction between the electron and external electrodes. Electric current, tunnel magnetoresistance, and average value of spin accumulated on the dot are calculated for an arbitrary angle between magnetic moments of the electrodes.  相似文献   

16.
We investigate the non-equilibrium dynamics of spherical spin models with two-spin interactions. For the exactly solvable models of the d-dimensional spherical ferromagnet and the spherical Sherrington-Kirkpatrick (SK) model the asymptotic dynamics has for large times and large waiting times the same formal structure. In the limit of large waiting times we find in both models an intermediate time scale, scaling as a power of the waiting time with an exponent smaller than one, and thus separating the time-translation-invariant short-time dynamics from the aging regime. It is this time scale on which the fluctuation-dissipation theorem is violated. Aging in these models is similar to that observed in spin glasses at the level of correlation functions, but different at the level of response functions, and thus different at the level of experimentally accessible quantities like thermoremanent magnetization. Received 22 April 1999  相似文献   

17.
18.
Magnetic Eden clusters (Ausloos et al., Europhys. Lett. 24, 629 (1993)) with ferromagnetic interaction between nearest-neighbor spins are grown in a confined 2d-geometry with short range magnetic fields acting on the surfaces. The change of the growing interface curvature driven by the field and the temperature is identified as a non-equilibrium wetting transition and the corresponding phase diagram is evaluated. Received 27 March 2000  相似文献   

19.
We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Green's function technique, the photon-assisted spin-dependent average current is analyzed. The T-shaped three-quantum-dot molecule A-B interferometer exhibits excellent controllability in the average current resonance spectra by adjusting the interdot coupling strength, Rashba spin-orbit coupling strength, magnetic flux, and amplitude of the time-dependent external field.Efficient spin filtering and multiple electron-photon pump functions are exploited in the multi-quantum-dot molecule A-B interferometer by a time-modulated external field.  相似文献   

20.
Magnetic domain structures are a fascinating area of study with interest deriving both from technological applications and fundamental scientific questions. The nature of the striped magnetic phases observed in ultra-thin films is one such intriguing system. The non-equilibrium dynamics of such systems as they evolve toward equilibrium has only recently become an area of interest and previous work on model systems showed evidence of complex, slow dynamics with glass-like properties as the stripes order mesoscopically. To aid in the characterization of the observed phases and the nature of the transitions observed in model systems we have developed an efficient method for identifying clusters or domains in the spin system, where the clusters are based on the stripe orientation. Thus we are able to track the growth and decay of such clusters of stripes in a Monte Carlo simulation and observe directly the nature of the slow dynamics. We have applied this method to consider the growth and decay of ordered domains after a quench from a saturated magnetic state to temperatures near and well below the critical temperature in the 2D dipolar Ising model. We discuss our method of identifying stripe domains or clusters of stripes within this model and present the results of our investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号