首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the formation and local electronic structure of Ge clusters on the Si(111)-7$\times $7 surface studied by using variable temperature scanning tunnelling microscopy (VT-STM) and low-temperature scanning tunnelling spectroscopy (STS). Atom-resolved STM images reveal that the Ge atoms are prone to forming clusters with 1.0~nm in diameter for coverage up to 0.12~ML. Such Ge clusters preferentially nucleate at the centre of the faulted-half unit cells, leading to the `dark sites' of Si centre adatoms from the surrounding three unfaulted-half unit cells in filled-state images. Bias-dependent STM images show the charge transfer from the neighbouring Si adatoms to Ge clusters. Low-temperature STS of the Ge clusters reveals that there is a band gap on the Ge cluster and the large voltage threshold is about 0.9~V.  相似文献   

2.
Scanning tunnelling microscopy (STM) study and modification of hydrogen (H)-passivated Ge(100) surfaces have been investigated. Thermal oxidation procedures were used to minimise surface roughness. Ge samples were passivated in HF solution after thermal oxidation. STM and atomic force microscope (AFM) imaging showed that, using HF etching after thermal oxidation, we can obtain a natural H-passivatedtopographically and chemically flat Ge(100) surface. The root-mean-square (rms) roughness ofa H-passivatedGe(100) surface measured both by STM and AFM is less than 2 ?. Electric properties of H-passivatedGe(100) surfaces were studied by scanning tunnelling spectroscopy (STS) in nitrogen ambient. STS showed that the H-passivated Ge surfaces were not pinned. Modification on H-passivated Ge(100) surfaces was carried out using STM by applying an electric voltage between the sample and tip in air. Modified features were characterised by STM and AFM imaging. On the H-passivated Ge(100) surfaces, stable, low-voltage, nanometer-scale modified features can be produced.  相似文献   

3.
Morphology and electronic properties of silver islands and deposited silver clusters on Ge(001) have been studied using scanning tunnelling microscopy (STM) and spectroscopy (STS) at low temperatures. Already the clean surface bears an interesting electronic structure, which is obvious from the STS. The tunnelling spectra exhibit strong peaks associated with dangling bond-derived surface states and an antibonding σ-state of the surface dimer. For silver islands of only few monolayers in height, complex spectra are interpreted to be dominated by metal–semiconductor interface states. These islands show energy gaps which are not observed for larger ones beyond 1 nm in height. Spectra of the larger islands contain a series of distinct peaks originating from lateral and three-dimensional electron confinement, respectively. Silver clusters – preformed in the gas phase using a cluster source – have been fabricated, size selected and deposited onto germanium(001). In tunnelling spectra dips at the Fermi level are accompanied by two maxima. These characteristics seem to be almost independent from the cluster size. Additional weak structures are found at higher bias voltages, which are understood in terms of quantized states. PACS 36.40.Cg; 61.46.+w; 73.20.At  相似文献   

4.
The atomic structure and charge transfer on the Ge (1 0 5) surface formed on Si substrates are studied using scanning tunneling microscopy and spectroscopy (STM and STS). The bias-dependent STM images of the whole Ge (1 0 5) facets formed on a Ge “hut” structure on Si (0 0 1) are observed, which are well explained by the recently confirmed structure model. The local surface density of states on the Ge (1 0 5) surface is measured by STS. The localization of the electronic states expected from charge transfer mechanism is observed in the dI/dV spectra. The surface band gap is estimated as 0.8-0.9 eV, which is even wider than the bulk bandgap of Ge, indicating the strong charge transfer effect to make the dangling bonds stable. The shape of normalized tunnel conductance agrees with the theoretical band structure published recently by Hashimoto et al.  相似文献   

5.
High-temperature scanning tunnelling microscopy, scanning tunnelling spectroscopy and current imaging tunnelling spectroscopy (HT-STM/STS/CITS) were used to study the topographic and electronic structures changes due to surface modifications of the TiO2(1 1 0) surface caused by the STM tip. In situ high-temperature STM results showed that the created modifications were stable even at elevated temperatures. The STS/CITS results showed the presence of energy gap below the Fermi level on the untreated regions. The disappearance of energy gap below the Fermi level on the modifications created by the tip was observed. It is assumed that the presence of the tip can change the chemical stoichiometry of the surface from TiO2−x towards Ti2O3.  相似文献   

6.
The work presented in this paper is based on the use of scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) to study the passivation of atomic scale defect-induced surface states on cleaved III–V (1 1 0) surfaces. This is based on the use of thin Si layers deposited in situ on to the atomically clean surface. The simultaneous STM and STS measurements allowed direct correlation of the structural and electronic properties at the nanoscopic level. The preferential adsorption of Si clusters onto surface defects was achieved using elevated temperature growth on the GaAs(1 1 0) substrate. The STS results clearly indicated local electronic passivation of both step defects and vacancy clusters when the interface is formed at 280 °C. This observation was also confirmed on a macroscopic level using X-ray photoelectron spectroscopy (XPS) under identical conditions. The results are interpreted in terms of the surface bonding of Si with the defect sites. Furthermore, this STM/STS study has been extended to real laser devices where comparable defect features are observed. The implications of defect passivation in nanotechnology are also discussed.  相似文献   

7.
The phenomena of remote projection and quantum mirages are investigated using standard quantum mechanics. The information inherent in delocalized wave functions in the vicinity of the Fermi level, including contributions from localized states, is available wherever the waves propagate coherently and have a non-vanishing amplitude and therefore can be probed remotely. This can explain the observation of a "quantum mirage" by Manoharan et al.: Nature 403, 512 (2000), i.e., the Kondo antiresonance due to a single adsorbed Co atom on Cu (111) far from the location of the cobalt atom. Similar quantum effects can give rise to "mirage" features in the scanning tunnelling spectrum (STS) both on clean and adsorbate-covered metal surfaces, features which are not resolved in other surface-sensitive spectroscopies (IPES, 2PPE). Within a theory based on a many-particle treatment of the tunnelling phenomena in STS and in scanning tunnelling microscopy (STM), the unexpected features in the scanning tunnelling spectra are associated with the spectral weight of transient ion-resonance states generated in the process of electron injection. They transport in a coherent way the information from the tip towards the sample and vice versa over distances of the order of 10 Å or more, generating spectroscopic structures. These "mirage" states are important for the tunnelling current and the imaging properties.  相似文献   

8.
We present results of scanning tunneling spectroscopy (STS) measurements of hydrogen-saturated silicon clusters islands formed on Si(111)-( 7×7) surfaces. Nanometer-size islands of Si6H12 with a height of 0.2-4 nm were assembled with a scanning tunneling microscope (STM) using a tip-to-sample voltage larger than 3 V. STS spectra of Si6H12 cluster islands show characteristic peaks originating in resonance tunneling through discrete states of the clusters. The peak positions change little with island height, while the peak width shows a tendency of narrowing for the tall islands. The peak narrowing is interpreted as increase of lifetime of electron trapped at the cluster states. The lifetime was as short as 10-13 s resulting from interaction with the dangling bonds of surface atoms, which prevents charge accumulation at the cluster islands. Received 30 November 2000  相似文献   

9.
T. Kwapiński  M. Ja?ochowski 《Surface science》2010,604(19-20):1752-1756
The influence of STM tip electronic states on the electron transport through an atomic object on a surface is studied both experimentally and theoretically. We present scanning tunnelling spectroscopy (STS) experimental results on Ag islands with two, blunt and sharp, STM tips. The data taken with the sharp tip have an additional peak at positive bias which corresponds to the tip apex atom state. We show that sudden tip sharpness variation and corresponding I(V) characteristic change may help to differentiate between electronic states of the tip and the sample. The experimental data are discussed and compared with theoretical calculations performed for two different tips. The current and differential conductance calculations are carried out by means of the Green's function technique and a tight-binding Hamiltonian.  相似文献   

10.
Low temperature (down to 2.5 K) scanning tunneling microscopy (STM) and spectroscopy (STS) measurements are presented to assess the nature of the alpha-Sn/Ge(111) surface. Bias-dependent STM and STS measurements have been used to demonstrate that such a surface preserves a metallic 3 x 3 reconstruction at very low temperature. A tip-surface interaction mechanism becomes active below about 20 K at the alpha-Sn/Ge(111) surface, resulting in an apparent unbuckled (sqrt[3] x sqrt[3]) reconstruction when filled states STM images are acquired with tunneling currents higher than 0.2 nA.  相似文献   

11.
Bias-dependent features of the insulating NaCl layer grown on Cu(001) have been investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The apparent layer thickness of the NaCl film is variable at bias voltages ranging from 2.8 to 3.2 V as well as from 4.0 to 5.0 V, and the Moiré pattern induced by NaCl–Cu lattice mismatch also shows bias dependence. The z–V (dz/dV–V) curves and dI/dV mapping measurements reveal that the resonant tunneling between the image potential states (IPSs) on Cu(001) and the Fermi level of the STM tip leads to drastic variations of these features.  相似文献   

12.
Cleaved in air a-b surface of Bi2Sr2CaCu2O8 (BSCCO-2212) was measured by means of STM and STS at 4.2 K in liquid hellium bath. From fitting experimental conductivity curves by Dynes' function two superconductivity parameters (gap value) and (smearing parameter) were obtained. The shape of gap structure superimposed on dI/dV characteristics depends on tip-sample distance, what is expressed by the increase of and decrease of with shortening of s. The phenomenon of becoming gap structure more distinct when approaching the tunneling tip to the surface is explained by us as the non-vacuum tunneling, where the surface contamination layer on non-metallic BiO top-surface layer strongly influences the tunneling process. Only for s short enough tunneling electrons penetrate to deeper situated CuO layers and reflect their superconducting behaviour. Non-vacuum STM images are therefore sensitive to the tip-sample distance adjustment. The dependence of gap parameters on lateral position of the tip above the sample can also occur. In such cases STS enables to state which elements of the image belong to the topography of the surface and which to its electron density of states.  相似文献   

13.
The fascination of research with nanometersized objects in contact with a macroscopic surface will be illustrated by two examples: mass-selected supported transition-metal clusters and C60 molecules on metallic single-crystal substrates. The preparation, mass-selection and deposition of the small particles will be described in some detail. The main experimental techniques involved in the characterization of their electronic and structural properties are photoelectron spectroscopy and scanning tunneling methods. For the transition-metal clusters the evolution of the valence band with cluster size reveals a trend to metal formation. When the tip of a Scanning Tunneling Microscope (STM) is placed above individual C60 molecules intense light emission is observed. The diameter of this emission spot is approximately 4 Å. This observation indicates the possibility of an optical spectroscopic analysis on the scale of individual molecules.  相似文献   

14.
Reactively sputtered Ta-Si-Nx barrier systems of different nitrogen content on copper were investigated by photoelectron spectroscopy (XPS, UPS) and scanning tunnelling microscopy (STM). The measured photoelectron spectra (excitation He-I) showed a clear dependence of the electron state density near the Fermi edge on the content of nitrogen. These results correlate with the I(U) characteristics of the STM measurements and the electrical conductivity of these layers.  相似文献   

15.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

16.
《Surface science》1994,314(3):L884-L888
The morphology and the electronic structure of heteroepitaxial germanium layers grown pseudomorphically by solution epitaxy on Si(001) has been investigated by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A significant decrease of tunneling current at a sample voltage of 1.5 V is observed in areas of 0.5 nm diameter between dimer rows. This decrease is due to a negative-differential conductivity at a tunnel diode configuration consisting of a surface defect structure of the germanium layer and the STM tungsten tip.  相似文献   

17.
The fundamental and technological importance of metal clusters and particles on oxide surfaces is growing. Here, room temperature deposited Ni clusters and particles on clean SrTiO3 (001) surfaces were analyzed with a UHV-TEM/STM combined system to investigate reaction, growth, morphology, and crystal structure consistently. STM observation revealed their growth process from isolated clusters almost of the size of the nuclei to bigger particles. From TEM observation, it was found that small clusters have a semi-commensurate epitaxial orientation relationship, but that bigger ones grow into an incommensurate cube-on-cube epitaxial orientation relationship. STS measurement on Ni particles caused field-induced diffusion of Ni atoms, in which piling up of Ni was recognized at the positions of the STM tips. This is assumed to be related with interfacial reaction.  相似文献   

18.
In this paper we simulate STM and STS experiments for CO monomers and dimers on Cu(1 1 1) surface. We show that the contrast of STM images can be attributed to interference effects between tunneling channels, and suggest that functionalizing the microscope tip improves the channel selectivity of STM. Furthermore, we show that voltage and position dependent tunneling spectra also reflect the same interference effects, but adds the energy resolution to the channel analysis. Especially in the case of nonresonant tunneling, STS measures local density of states only indirectly. The present study suggests that STS in constant height mode can be used in investigating the phase and energy sensitivity of tunneling channels in adsorbate molecules and nanostructures.  相似文献   

19.
刘锴  王兵 《物理学报》2011,60(4):46801-046801
利用Scanning Tunneling Microscope(STM)和Scanning Tunneling Spectroscopy(STS)技术研究了La0.67Ca0.33MnO3(001)表面性质,研究发现表面呈现多相分离现象,在锰氧终端面观察到了绝缘性的( 2 × 2 )R45°重构表面和金属性的(1×1)重构表面,在镧钙氧终端面,观察到了表面呈现条纹状结构.La0.67Ca0.33 关键词: 镧钙锰氧薄膜 终端面 绝缘金属转变  相似文献   

20.
Higher manganese silicide nanowires have been grown on the Si(001)-2 × 1 surface by the pre-growth of Bi nanolines. Scanning tunnelling microscope (STM) observations show that the nanowire has a linear surface reconstruction with a periodicity of 0.56 nm, and we propose a reconstruction on their surface to reduce the density of dangling bonds, which forms linear structures matching the dimensions from STM. Scanning tunnelling spectroscopy (STS) data agree with previous calculation results and reveal that the nanowires are degenerate semiconductors, with potential application for spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号