首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Ponciri Fructus, a crude drug consisting of the dried immature fruits of Poncirus trifoliata (L.) Raf., is a popular folk medicine used for the treatment of allergy and gastrointestinal disorders in Korea and China. In this study, the anti-adipogenic activity of extracts and isolated compounds were evaluated using 3T3-L1 preadipocytes. Methods: Dried immature fruits were extracted and fractionated into n-hexane, ethyl acetate (EtOAc), n-butanol and water-soluble fractions. The ethanol extract and fractions were tested for anti-adipogenic activity in the 3T3-L1 cell line. The active fractions (n-hexane and EtOAc fractions) were further subjected to chromatographic techniques to isolate and identify active compounds. Furthermore, the isolated compounds were evaluated for their anti-adipogenic activity. Results: Altogether, seven compounds, including two flavonoids, one phytosteroid and four coumarin derivatives, were isolated. Ethanol extract, n-hexane fraction, EtOAc fraction and three isolated compounds (phellopterin, oxypeucedanin and poncirin) showed significant anti-adipogenic activity as observed by reduced lipid deposition in differentiated 3T3-L1 cells. Further, oxypeucedanin downregulated the key adipogenic markers, such as peroxisome proliferator-activated receptors proteins γ (PPAR-γ), sterol response element binding proteins-1 (SREBP-1), CCAAT/enhancer binding proteins-α (C/EBP-α), adipocyte-specific lipid binding proteins (FABP-4), adipocyte fatty acid binding proteins (aP2), lipoprotein lipase (LPL) and leptin. Conclusion: This study indicated that the ethanol extract, hexane fraction and ethyl acetate fraction of P. trifoliata fruits possess strong anti-adipogenic activity, containing the active compounds such as phellopterin, oxypeucedanin and poncirin. Further research is recommended to explore their efficacy and safety in animal and clinical models.  相似文献   

2.
Kahweol, a compound from Coffea arabica, possesses antioxidant, anti-inflammatory, and antitumour properties. However, an anti-adipogenic effect has not yet been reported. In this study, we have shown that kahweol has an anti-adipogenic effect on 3T3-L1 adipocytes. Kahweol significantly inhibited the differentiation of intracellular lipid accumulation in 3T3-L1 adipocytes, without being cytotoxic. It also downregulated the expression of adipogenesis-related gene, including an adipocytokine, adiponectin. This anti-adipogenic effect stems from an ability to inhibit key adipogenic regulators, including PPARγ and C/EBPα. These results demonstrate that kahweol significantly inhibits the differentiation of 3T3-L1 cells, and suggest that it has potential as a novel anti-obesity treatment.  相似文献   

3.
The present experiment was carried out to evaluate the effect of coculturing on myogenic and adipogenic marker gene expressions with the use of C2C12 and 3 T3-L1 preadipocyte cells under the coculture system. C2C12 and 3 T3-L1 cells were cocultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates, and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. After coculture of the C2C12 and 3 T3-L1 cells for 48 and 72 h, the cells in the lower well were harvested for analysis, and this process was carried out for both cells. Myogenic markers such as myogenin, MyoD, Myf5, PAX3, and PAX7 mRNA expressions were analyzed in the cocultured C2C12 cells. Adipogenic markers such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein (CEBPA), adiponectin, lipoprotein lipase, and fatty acid synthase mRNA expressions were analyzed in the cocultured 3 T3-L1 cells. Myogenic and adipogenic marker gene mRNA expressions were significantly altered in the cocultured C2C12 and 3 T3-L1 cells when compared with the monocultured C2C12 and 3 T3-L1 cells.  相似文献   

4.
5.
Obesity has recently emerged as a public health issue facing developing countries in the world. It is caused by the accumulation of fat in adipose, characterized by insulin resistance, excessive lipid accumulation, inflammation, and oxidative stress, leading to an increase in adipokine levels. Herein, we investigated the capacity of a bioactive polyphenolic compound (ferulic acid (FA)) to control adipocyte dysfunction in 3T3-L1 adipocytes (in vitro). Key adipocyte differentiation markers, glycerol content, lipolysis-associated mRNA, and proteins were measured in experimental adipocytes. FA-treated adipocytes exhibited downregulated key adipocyte differentiation factors peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAT enhancer binding-proteins—α (C/EBP-α) and its downstream targets in a time-dependent manner. The FA-treated 3T3-L1 adipocytes showed an increased release of glycerol content compared with non-treated adipocytes. Also, FA treatment significantly up-regulated the lipolysis-related factors, including p-HSL, and p-perilipin, and down-regulated ApoD, Sema3C, Cxcl12, Sfrp2, p-stearoyl-CoA desaturase 1 (SCD1), adiponectin, and Grk5. Also, the FA treatment showed significantly down-regulated adipokines leptin, chemerin, and irisin than the non-treated cells. The present findings indicated that FA showed significant anti-adipogenic and lipogenic activities by regulating key adipocyte factors and enzyme, enhanced lipolysis by HSL/perilipin cascade. FA is considered a potent molecule to prevent obesity and its associated metabolic changes in the future.  相似文献   

6.
The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H2O2-induced oxidative stress condition. H2O2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H2O2-induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H2O2-induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H2O2-induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.  相似文献   

7.
8.
Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.  相似文献   

9.
Inhibition of adipocytes differentiation is suggested to be an important strategy for prevention and/or treatment of obesity. In our present study, Cordyceps militaris showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 preadipocytes as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of cordycepin (1), guanosine (2) and tryptophan (3) as active compounds. All the three compounds were more effective in the prevention of early stage of adipogenesis than in lipolysis. In addition, combinational treatment of three compounds significantly increased anti-adipogenic activity.  相似文献   

10.
The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.  相似文献   

11.
12.
A large collection of bioactive compounds with diverse biological effects can be used as probes to elucidate new biological mechanisms that influence a particular cellular process. Here we analyze the effects of 880 well-known small-molecule bioactives or drugs on the insulin-induced adipogenesis of 3T3-L1 fibroblasts, a cell-culture model of fat cell differentiation. Our screen identified 86 compounds as modulators of the adipogenic differentiation of 3T3-L1 cells. Examination of their chemical and pharmacological information revealed that antihistamine drugs with distinct chemical scaffolds inhibit differentiation. Histamine H1 receptor is expressed in 3T3-L1 cells, and its knockdown by small interfering RNA impaired the insulin-induced adipogenic differentiation. Histamine receptors and histamine-like biogenic amines may play a role in inducing adipogenesis in response to insulin.  相似文献   

13.
Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.  相似文献   

14.
Recent studies have shown that Nur77 and AMPKα play an important role in regulating adipogenesis and isoalantolactone (ISO) dual-targeting AMPKα and Nur77 inhibits adipogenesis. In this study, we hypothesized that Inula helenium (elecampane) root extract (IHE), which contains two sesquiterpene lactones, alantolactone (ALA) and ISO, as major compounds, might inhibit adipogenesis. Here, we found that ALA and IHE simultaneously target AMPKα and Nur77 and inhibited adipogenic differentiation of 3T3-L1 cells, accompanied by the decreased expression of adipocyte markers. Further mechanistic studies demonstrated that IHE shares similar mechanisms of action with ISO that reduce mitotic clonal expansion during the early phase of adipogenic differentiation and decrease expression of cell cycle regulators. These results suggest that IHE inhibits adipogenesis, in part, through co-regulation of AMPKα and Nur77, and has potential as a therapeutic option for obesity and related metabolic dysfunction.  相似文献   

15.
16.
17.
The present study was carried out to understand the effect of cortisol on calpain system in the C2C12 and 3T3-L1 adipocyte cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4 μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates. Ten microgram per milliliter of cortisol was added to the medium. Following treatment for 3 days, the cells in the lower well were harvested for analysis. Calpains such as μ-calpain, m-calpain, and calpastatin were selected for the analysis. RT-PCR results indicated the significant increase in the mRNA expression of μ-calpain, m-calpain, and calpastatin. In addition, the confocal microscopical investigation indicated the cortisol treatment increases calpain expression in the C2C12 and 3T3-L1 cells. Taking all these together, cortisol treatment with co-culture system shows most reliable status of calpains expression in the cells, which is quite distinct from one-dimensional monocultured cells.  相似文献   

18.
Although some eicosanoids serve as potent natural ligands to activate peroxisome proliferator-activated receptor (PPARγ), the ability of adipocytes to produce eicosanoids and regulate PPARγ remains unclear. Here, adipogenic 3T3-L1 cells were employed to determine the gene expression of isoforms of biosynthetic enzymes in the arachidonate cyclooxygenase (COX) pathway and the synthesis of prostaglandins (PGs). The expression of COX-2 was induced transiently in a biphasic manner upon the triggering of the differentiation and maturation phases while COX-1 was constitutive. The exclusive expression of lipocalin-type PGD synthase occurred and gradually increased during the maturation process along with the stable expression of PPARγ. Moreover, we confirmed the formation of PGD2 from arachidonic acid by the mature adipocytes, suggesting conversion into PGJ2 derivatives. Even though cytosolic and membrane-associated subtypes of PGE synthase were expressed at relatively constant levels, the ability of preadipocytes to produce PGE2 was greater than that of mature adipocytes in the cell response. The treatment of the mature adipocytes with exogenous PGD2, 15-deoxy-Δ12,14-PGJ2 and PGE2, in the presence of aspirin, enhanced the adipogenesis. These findings imply the specific roles of prostanoids produced by the mature adipocytes in the maintenance of terminal differentiation through an autocrine control mechanism.  相似文献   

19.
(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.  相似文献   

20.
Berberine (BBR), a plant alkaloid, is known for its therapeutic properties of anticancer, cardioprotective, antidiabetic, hypolipidemic, neuroprotective, and hepatoprotective activities. The present study was to determine the molecular mechanism of BBR’s pharmacological activity in human monocytic (THP-1) cells induced by arachidonic acid (AA) or lipopolysaccharide (LPS). The effect of BBR on AA/LPS activated proinflammatory markers including TNF-α, MCP-1, IL-8 and COX-2 was measured by ELISA or quantitative real-time PCR. Furthermore, the effect of BBR on LPS-induced NF-κB translocation was determined by immunoblotting and confocal microscopy. AA/ LPS-induced TNF-α, MCP-1, IL-6, IL-8, and COX-2 markers were markedly attenuated by BBR treatment in THP-1 cells by inhibiting NF-κB translocation into the nucleus. Molecular modeling studies suggested the direct interaction of BBR to IKKα at its ligand binding site, which led to the inhibition of the LPS-induced NF-κB translocation to the nucleus. Thus, the present study demonstrated the anti-inflammatory potential of BBR via NF-κB in activated monocytes, whose interplay is key in health and in the pathophysiology of atherosclerotic development in blood vessel walls. The present study findings suggest that BBR has the potential for treating various chronic inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号