首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of micellar liquid chromatography for the determination of diuretics in urine by direct injection of the sample into the chromatographic system is discussed. The retention of the urine matrix at the beginning of the chromatograms was observed for different sodium dodecyl sulphate (SDS) mobile phases. The eluent strengths of a hybrid SDS-methanol micellar mobile phase for several diuretics were compared and related to the stationary phase/water partition coefficient with a purely micellar mobile phase. The urine band was appreciably narrower with a mobile phase of 0.05 M SDS-5% methanol (v/v) at 50 degrees C (pH 6.9). With this mobile phase the determination of bendroflumethiazide and chlorthalidone was adequate. Acetazolamide, ethacrynic acid, furosemide, hydrochlorothiazide and probenecid were overlapped by the urine matrix, and the retention of amiloride and triamterene was too long.  相似文献   

2.
A comparative study on the performance of two RPLC modes on the separation of 18 diuretics with diverse acid-base behaviour (acetazolamide, althiazide, amiloride, bendroflumethiazide, benzthiazide, bumetanide, canrenoic acid, chlorothiazide, chlorthalidone, ethacrynic acid, furosemide, hydrochlorothiazide, piretanide, probenecid, spironolactone, triamterene, trichloromethiazide and xipamide) was carried out. A conventional octadecylsilane column and acidic acetonitrile-water mobile phases, in the absence and presence of micelles of the anionic surfactant sodium dodecyl sulphate (SDS), were used. The effects of pH and the modifiers acetonitrile and SDS on peak asymmetry, efficiency, selectivity, resolution and analysis time, were examined. The comparison of both RPLC modes (aqueous- and micellar-organics) was done using the same processing tools, applying several polynomial and mechanistic equations to describe the retention. The best separations were obtained by maximising the product of peak purities, considering a wide range of experimental conditions. The study illustrates that, despite the theoretical and practical complexity of the problem, the predicted optimal chromatograms can be reproduced experimentally with great accuracy. None of the examined RPLC modes was able to yield baseline separation of the 18 diuretics. However, their selectivity was complementary, being appropriate for different combinations of a smaller number of the assayed diuretics.  相似文献   

3.
Aqueous solutions of bile salts, i.e. sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium taurocholate (NaTC), are characterized and evaluated as reversed-phase liquid chromatographic (RPLC) mobile phases. The separation of the ASTM-recommended RPLC test mix in addition to more than 50 other compounds on a C18 column demonstrates the viability of these bile salts as HPLC mobile phases. The Armstrong-Nome theory was applied and found to adequately describe the partitioning behavior of solutes eluted with these bile salts at low surfactant concentrations. The effect of alcohol additives on chromatographic retention and efficiency was also assessed. Not only are the bile salt molecules rigid and chiral, but they form helical micellar aggregates as well. Consequently, many isomeric compounds can be easily resolved with this mobile phase additive. The base-line resolution of some binaphthyl-type enantiomers with a standard C18 column and the bile salt micellar mobile phases is also demonstrated. In addition, these bile salt mobile phases may be preferable to conventional hydroorganic mobile phase systems for the separation of many classes of routine compounds. A brief prospectus on the future utilization of bile salts in liquid chromatography is presented.  相似文献   

4.
The behaviour of β-blockers in a reversed-phase liquid chromatographic (RPLC) column with mobile phases containing a short-chain alcohol (methanol, ethanol or 1-propanol), with and without the surfactant sodium dodecyl sulphate (SDS), was explored. Two surfactant-mediated RPLC modes were studied, where the mobile phases contained either micelles or only surfactant monomers at high concentration. Acetonitrile was also considered for comparison purposes. A correlation was found between the effects of the organic solvent on micelle formation (monitored by the drop weight procedure) and on the nature of the chromatographic system (as revealed by the retention, elution strength and peak shape of β-blockers). When SDS is added to the mobile phase, the free surfactant monomers bind the C18 bonded chains on the stationary phase, forming an anionic layer, which attracts strongly the cationic β-blockers. The retention is modified as a consequence of the solving power of the organic solvent, micelles and surfactant monomers. The molecules of organic solvent bind the micelles, modify their shape, and may avoid their formation. They also bind the monomers of surfactant, desorbing them from the stationary phase, which affects the retention. The remaining surfactant covers the free silanols on the siliceous support, avoiding the interaction with the cationic solutes. The retention of β-blockers results from a combination of electrostatic and hydrophobic interactions, the latter being weaker compared to the hydro-organic system. The peak efficiencies and asymmetries are excellent tools to probe the surfactant layer on the stationary phase in an SDS/organic solvent system. The peaks will be nearly symmetrical wherever enough surfactant coats the stationary phase (up to 60% methanol, 40% ethanol, 35% 1-propanol, and 50% acetonitrile).  相似文献   

5.
Organic solvents are traditionally added to micellar mobile phases to achieve adequate retention times and peak profiles, in a chromatographic mode which has been called micellar liquid chromatography (MLC). The organic solvent content is limited to preserve the formation of micelles. However, at increasing organic solvent contents, the transition to a situation where micelles do not exist is gradual. Also, there is no reason to neglect the potentiality of mobile phases containing only surfactant monomers instead of micelles (high submicellar chromatography, HSC). This is demonstrated here for the analysis of β-blockers. The performance of four organic solvents (methanol, ethanol, 1-propanol, and acetonitrile) was compared in mobile phases containing the anionic surfactant sodium dodecyl sulphate in the MLC and HSC modes. The association of the organic solvent molecules with micelles gives rise to a significant loss in the elution strength of the organic solvent; whereas upon disruption of micelles, it tends to that observed in the hydro-organic mode. The elution behaviour of the β-blockers was modelled to predict the retention times. This allowed the detailed exploration of the selectivity and resolution of the chromatographic systems in relatively wide ranges of concentration of surfactant and organic solvent. The best performance in terms of resolution and analysis time was achieved using HSC with acetonitrile, being able to base-line resolve a mixture of eight β-blockers. Ethanol also provided a good separation performance, significantly improved with respect to methanol and 1-propanol. In contrast, the hydro-organic mode using acetonitrile or any of the short-chain alcohols could not succeed with the separation of the β-blockers, owing to the poorer selectivity and wider peaks.  相似文献   

6.
The chromatographic behaviour of some active ingredients in cough-cold pharmaceutical preparations, the antihistamine chlorpheniramine (or the dextro enantiomer dexchlorpheniramine), and the phenethylamines phenylephrine, phenylpropanolamine and pseudoephedrine, has been studied using a C(18) column, micellar mobile phases of sodium dodecyl sulphate (SDS) and pentanol, and with UV detection. All possible combinations of chlorpheniramine/phenethylamine were resolved and determined using a mobile phase of 0.15 M SDS-6% (v/v) pentanol at pH 7, with analysis time below 7 min. Repeatabilities and within laboratory precisions were evaluated at four different drug concentrations in the range 0.5-25 mug ml(-1) (n=5), resulting RSDs below 1.6%. The drug amounts found in the analysis of 14 commercialised preparations agreed with those declared by the manufacturers within the tolerance limits, and with those obtained using an aqueous 60% (v/v) methanol reference mobile phase. No interference was observed from other accompanying drugs such as acetylsalicylic acid, ascorbic acid, betamethasone, caffeine, codeine phosphate, diphenhydramine, lactose, paracetamol, and prednisolone. The studied combinations required a rather high amount of methanol in conventional RPLC to be eluted from the column. In contrast, the proposed procedure used a much lower amount of organic solvent (pentanol), which is highly retained in the SDS solution, being also less toxic than methanol.  相似文献   

7.
The behaviour of a reversed-phase liquid chromatographic (RPLC) system (i.e. elution order, resolution and analysis time), used in the analysis of β-blockers with acetonitrile–water mobile phases, changes drastically upon addition of an anionic surfactant (sodium dodecyl sulphate, SDS). Surfactant monomers cover the alkyl-bonded phase in different extent depending on the concentration of both modifiers, in the ranges 1 × 10−3–0.15 M SDS and 5–50% acetonitrile. Meanwhile, the surfactant is dissolved in the mobile phase as free monomers, associated in small clusters or forming micelles. Four characteristic RPLC modes are yielded, with transition regions between them: hydro-organic, micellar, and low and high submicellar. The mobile phases in the two latter modes contain a concentration of SDS below or well above the critical micellar concentration (CMC) in water (i.e. 8 × 10−3 M), and more than 30% acetonitrile. High submicellar RPLC appeared as the most promising mode, as it allowed full resolution of the β-blockers in practical times, while these were unresolved or highly retained in the other RPLC modes. The strong attraction of the cationic solutes to the anionic SDS makes a direct transfer mechanism between surfactant molecules in the stationary and mobile phases likely.  相似文献   

8.
A simple and reliable micellar liquid chromatographic method was developed for the simultaneous determination of 3 opiates (codeine, morphine, and thebaine) in serum, using direct injection and ultraviolet detection. The separation of the drugs was optimized on a C18 column, thermostatically controlled at 25 degrees C, by evaluating mobile phases containing sodium dodecyl sulfate (SDS) and various modifiers (propanol, butanol, or pentanol). Adequate resolution of the opiates was obtained with a chemometrics approach, in which retention was modeled as a first step by using the retention factors for several mobile phases. Next, an optimization criterion that takes into account the position and shape of the chromatographic peaks was applied. The 3 opiates were totally resolved and determined in 12 min with the mobile phase 0.15M SDS-7% (v/v) butanol buffered at pH 7. The limits of detection for codeine and morphine were greatly improved by using fluorimetric detection. Repeatability and intermediate precision were tested for 3 different concentrations of the drugs, and the relative standard deviations were <0.8% for most of the assays. Finally, the method was successfully applied to the determination of morphine and codeine in serum samples.  相似文献   

9.
Surfactants added to the mobile phases in reversed-phase liquid chromatography (RPLC) give rise to a modified stationary phase, due to the adsorption of surfactant monomers. Depending on the surfactant nature (ionic or non-ionic), the coated stationary phase can exhibit a positive net charge, or just change its polarity remaining neutral. Also, micelles in the mobile phase introduce new sites for solute interaction. This affects the chromatographic behavior, especially in the case of basic compounds. Two surfactants of different nature, the non-ionic Brij-35 and the anionic sodium dodecyl sulfate (SDS) added to water or aqueous-organic mixtures, are here compared in the separation of basic compounds (β-blockers and tricyclic antidepressants). The reversible/irreversible adsorption of the monomers of both surfactants on the stationary phase was examined. The changes in the nature of the chromatographic system using different columns and chromatographic conditions were followed based on the changes in retention and peak shape. The study revealed that Brij-35 is suitable for analyzing basic compounds of intermediate polarity, using "green chemistry", since the addition of an organic solvent is not needed and Brij-35 is a biodegradable surfactant. In contrast, RPLC with hydro-organic mixtures or mobile phases containing SDS required high concentrations of organic solvents.  相似文献   

10.
This paper describes the results of an initial study on the application of linear solvation energy relationships (LSERs) to the prediction of internal standard compounds in reversed-phase liquid chromatographic (RPLC) method development. Six neutral samples are separated on an Inertsil ODS(3) column by either acetonitrile-water or methanol-water mobile phases under either isocratic or linear gradient conditions. After the separation conditions are optimized, the desired positions for internal standard candidates are selected based on the "open windows" of the chromatograms. The compounds with the desired retention range are then predicted based on LSERs from a database consisting of more than 700 compounds with defined physicochemical properties. The prediction requires the use of LSER coefficients under the separation conditions for each sample. They are determined a priori by performing multivariable linear regression on the retention of 20 reference solutes against their physicochemical properties. It can be concluded from the study that LSER is an excellent approach to the selection of internal standard compounds for RPLC under either isocratic or gradient elution. The average prediction error is usually within 10%, but no more than 20%. Finally, LSER approach is fast and systematic, and will save a significant amount of time and resources during RPLC method development.  相似文献   

11.
A procedure was developed for the determination of several phenethylamines (amphetamine, arterenol, ephedrine, phenylephrine, phenylpropanolamine, mephentermine, methoxyphenamine, pseudoephedrine and tyramine), using micellar mobile phases of sodium dodecyl sulfate (SDS), a C18 column and UV detection. The drugs were eluted at short retention times with conventional acetonitrile-water or methanol-water mobile phases. In contrast, in the micellar system, they were strongly retained due to association with the surfactant adsorbed on the stationary phase, and needed the addition of butanol or pentanol to be eluted from the column. These modifiers allowed a simple way of controlling the retention. The chromatographic efficiencies obtained with the hybrid mobile phases of SDS-butanol and SDS-pentanol were also very high, mostly in the N=3000-7000 range, significantly greater than those achieved with a conventional acetonitrile-methanol-water mobile phase. Butanol and pentanol yielded similar selectivities, but the latter modifier permitted significantly shorter retention times than butanol, and was preferred to expedite the analysis of the pharmaceuticals. Most binary combinations of the nine phenethylamines can be resolved with these mobile phases. A mobile phase of 0.15 M SDS-5% pentanol was used to assay five of the phenethylamines (amphetamine, ephedrine, phenylephrine, phenylpropanolamine and pseudoephedrine) in 22 pharmaceutical preparations, which contained diverse accompanying compounds. The results agreed with the declared compositions and with those obtained with a mobile phase of methanol-acetonitrile-0.05 M phosphate buffer (pH 3) 10:5:85, with no interferences and relative errors usually below 2%. However, with the aqueous-organic mobile phase, the retention time for phenylephrine was too low and could not be usually evaluated.  相似文献   

12.
13.
Comprehensive two-dimensional (2D) HPLC in the reversed-phase liquid chromatography (RPLC) mode using C18 silica monolith columns at first dimension (1st-D) (10 cm x 4.6mm I.D.) and second dimension (2nd-D) (5 cm x 4.6mm I.D.) was carried out successfully. A mixture of water and tetrahydrofuran (THF) was used as a mobile phase in the 1st-D separation, and a mixture of water and methanol (CH3OH) in the 2nd-D separation. Sample fractions from 1st-D column were directly loaded into an injection loop of the 2nd-D HPLC equipped with two injector valves for one column. The fractionation time at the 1st-D that was equal to the separation time at the 2nd-D was 45 or 60s. Total peak capacity up to 900 was obtained in about 60 min for the isocratic mode separation of aromatic compounds in this system. Gradient elution mode applied to both 1st-D and 2nd-D separations resulted in shorter separation time and better separation efficiencies than the isocratic mode. It was demonstrated that 2D-HPLC systems employing popular C18 stationary phases with different organic modifiers in mobile phases for each dimension could produce large peak capacity. The different selectivities were provided by the difference in polar interactions between a solute and the organic modifier existing in the stationary phase.  相似文献   

14.
15.
利尿剂的胶束色谱分析   总被引:3,自引:0,他引:3  
用十二烷基硫酸钠(SDS)胶束溶液作为流动相,建立了11种利尿剂的胶束色谱系统分析方法;研究了SDS浓度、流动相的pH、有机改性剂及温度对色谱保留行为的影响,优化了色谱条件,并且不经化学处理直接进样测定了人尿中的烯睾丙内酯;该法适用于兴奋剂中利尿剂的常规分析。  相似文献   

16.
Micellar liquid chromatography (MLC) is a reversed-phase liquid chromatographic (RPLC) mode with mobile phases containing a surfactant (ionic or non-ionic) above its critical micellar concentration (CMC). In these conditions, the stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to diverse interactions (hydrophobic, ionic and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming a real alternative in some instances (and a complement in others) to classical RPLC with hydro-organic mixtures, owing to its peculiar features and unique advantages. This review is aimed to describe the retention mechanisms (i.e. solute interactions with both stationary and mobile phases) in an MLC system, revealed in diverse reports where the retention behaviour of solutes of different nature (ionic or neutral exhibiting a wide range of polarities) has been studied in a variety of conditions (with ionic and non-ionic surfactants, added salt and organic solvent, and varying pH). The theory is supported by several mechanistic models that describe satisfactorily the retention behaviour, and allow the measurement of the strength of solute-stationary phase and solute-micelle interactions. Suppression of silanol activity, steric effects in the packing pores, anti-binding behaviour, retention of ionisable compounds, compensating effect on polarity differences among solutes, and the contribution of the solvation parameter model to elucidate the interactions in MLC, are commented.  相似文献   

17.
Summary The effect of the presence of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), and a short chain alcohol,n-propanol, in the mobile phase on the chromatographic retention of Co(II), Ni(II) and Cu(II) diethylammonium diethyldithiocarbamate complexes, has been studied. A simple isocratic reversephase method for the determination of the metals is proposed, using a mobile phase of composition CTAB 0.03 M/n-propanol 45 %v/v. Detection limits at pg levels were obtained for all solutes. The method was applied to the determination of the complexes in tap water samples at three different concentrations, with recoveries close to 100%. In order to evaluate the interaction between the metal complexes and the aggregates formed, the values of solute binding constants are calculated.  相似文献   

18.
A reversed-phase high-performance liquid chromatographic method for the determination of free and total cysteine in urine is described. The method involves reductive conversion of cysteine dimer and cysteine mixed disulphides to their reduced counterpart with the use of tri-n-butylphosphine, ultraviolet-labeling with 2-chloro-1-methylquinolinium tetrafluoroborate, and liquid chromatographic separation with isocratic conditions. In developing this method the following parameters were investigated and optimized: the time, pH and reagent excess in the derivatization step, and mobile phase buffer concentration, pH, organic modifier and column temperature in the separation step. The method provides quantitative information on free and total cysteine based on assays with derivatization before and after reduction with tri-n-butylphosphine. The calibration graph, obtained with the use of normal urine spiked with growing amounts of cystine, was linear over the concentration range covering most experimental and clinical cases. The assay has a low pmol detection and quantitation limits, low imprecision and high recovery. The method was validated for urine samples received from several donors. Cystine was chosen as a primary calibrator for these assays.  相似文献   

19.
An enantioselective liquid chromatographic assay for the simultaneous determination of the S-(+) and R-(-) enantiomers of the monohydroxylated metabolite of oxcarbazepine in human plasma is described. The metabolite is the active principle. The method is based on the extraction of plasma with diethyl ether-dichloromethane (2:1, v/v), separation of the organic phase, evaporation of the solvent and dissolution of the residue in the mobile phase. The two enantiomers were resolved on a Chiralcel OD (250 mm x 4.6 mm I.D.) high-performance liquid chromatographic column. The separation was achieved by isocratic elution with n-hexane-2-propanol (77:23, v/v). The flow-rate of the mobile phase was 1.0 ml/min and the two enantiomers were detected by ultraviolet absorbance at 210 nm. The analytical method is suitable for the quantitative and simultaneous determination of the two enantiomers in plasma at concentrations down to 0.4 mumol/l after administration of oxcarbazepine.  相似文献   

20.
Two biogenic amines, tryptamine and tyramine, and their precursors, tryptophan and tyrosine, were determined by a liquid chromatographic procedure. A hybrid micellar mobile phase of sodium dodecyl sulphate (SDS) and 1-propanol, a C18 column and electrochemical detection were used. A pH study in the range of 3-9 was performed and pH 3 was finally selected in accordance with resolution and analysis time. Oxidation potential was also checked in the range 0.6-0.9V: the maximum area obtained in all those potentials was at 0.8V, which was selected to carry out the analysis using a sequence of pulsed amperometric detection waveform. The four compounds were resolved using a mobile phase of 0.15M SDS-5% 1-propanol with an analysis time of 16 min. Repeatabilities and intermediate precision were evaluated at three different concentrations for each compound with RSD values lower than 2.6 and 4.8%, respectively. Limits of detection and quantification were also obtained within the 10-40 and 33-135 ng/ml ranges, respectively. Finally, the applicability of the procedure was tested in several types of wine and no matrix effect was observed. The possibility of direct sample introduction simplifies and greatly expedites the treatments with reduced cost, improving the accuracy of the procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号