首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用水热合成方法制备了PVP表面修饰CdS纳米棒,用XRD,TEM,TG-DTA,IR,UV-Vis,PL等光谱技术进行了表征。与未修饰的CdS纳米棒相比,PVP修饰后的CdS纳米棒具有更均匀的尺寸分布,吸收光谱具有结构峰特征,其荧光发射谱增强。  相似文献   

2.
表面修饰纳米碳管复合二氧化硅凝胶玻璃的制备研究   总被引:1,自引:0,他引:1  
采用羧基化、酰氯化和酰胺化等三步化学反应实现了r-氨基丙基三乙氧基硅烷(NH2(CH2)3Si(OC2H5)3,APTES)对纳米碳管(CNTs)的表面修饰。在此基础上,采用溶胶-凝胶工艺将其引入到二氧化硅凝胶玻璃中,并通过红外IR光谱、扫描电子显微镜SEM分析测试方法对所得样品的组成和结构进行表征。结果表明,经过一系列的化学处理,成功实现了CNTs与APTES的共价键合而达到表面修饰的效果。溶胶-凝胶过程中,先驱液中正硅酸乙酯(Si(OC2H5)4,TEOS)、r-缩水甘油醚基丙基三甲氧基硅烷(CH2OCHCH2O(CH2)3Si(OCH3)3,GPTMS)、CNTs-APTES分别发生水解,并经过共同聚合反应形成二氧化硅三维网络结构,而CNTs也借助于APTES而被化学键合到二氧化硅网络中,实现了在二氧化硅凝胶玻璃基质中的均匀分散,从根本上克服了CNTs在固相基质中团聚的问题。  相似文献   

3.
RuO2/TiO2复合光催化剂的制备及性能研究   总被引:4,自引:0,他引:4  
采用溶胶-凝胶-浸渍法制备了RuO2/TiO2复合光催化剂, 以紫外灯为光源, 直接耐晒黑G溶液的光催化降解为模型反应, 研究了RuO2/TiO2的光催化性能. 结果表明 掺杂量ω(RuO2)为0.16%、煅烧温度500 ℃、催化剂投加量为5.00 g·L-1时, RuO2/TiO2复合光催化剂催化活性最高. 直接耐晒黑G降解反应遵从Langmuir-Hinshelwood动力学模型, 测得反应速率常数为4.94×10-3 mmol(L·min)-1和吸附常数14.2 L·mmol-1.  相似文献   

4.
碳纳米管增强镍磷基复合镀层研究   总被引:19,自引:0,他引:19       下载免费PDF全文
对CVD方法制备的碳纳米管进行表面改性处理,然后在液相中分散,利用化学共沉积方法形成碳纳米管镍磷基复合镀层,研究了碳纳米管表面改性后的红外谱、碳纳米管复合镀层的表面形貌、硬度及摩擦学行为.结果表明:碳纳米管的加入明显地提高镍磷复合镀层的硬度和改善了镍磷复合镀层的摩擦性能.硬度达到946HV,20N载荷时摩擦系数为0.7,增至80N时降为0.6;相同条件下与传统耐磨材料SiC增强的镍磷基复合镀层相比,具有更低的摩擦系数和磨损量. 关键词: 碳纳米管 表面改性 复合镀层 摩擦行为  相似文献   

5.
制备了普鲁士蓝(PB)/壳聚糖(CS)/多壁碳纳米管(MWCNTs)修饰的玻碳电极.采用循环伏安法(CV),扫描电子显微镜、红外光谱技术对修饰电极进行表征,结果表明,PB纳米成功的修饰到电极表面,膜结构较均一,修饰量大,具有较强的空间结构性.此外,研究了不同pH值和不同扫描速率条件下PB/CS/MWCNTs修饰电极在0.1mol/L磷酸缓冲溶液中的电化学行为,结果表明该修饰电极具有良好的电化学性质,在电化学生物传感器领域具有潜在的应用价值.  相似文献   

6.
采用等离子体处理技术对碳纳米管进行表面处理是一项新兴的技术,本文对在碳纳米管处理过程中,等离子体处理工艺参数的选择,以及处理前后表面结构变化、形貌变化、场发射效应等进行了综述,并对等离子体处理技术在碳纳米管表面修饰中的应用前景进行了展望。  相似文献   

7.
CdS/TiO2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶-浸渍法制备了Cds/TiO2/漂珠复合光催化剂,通过SEM,XRD对其结构进行了表征.以高效氯氰菊酯(BEC)杀虫剂的光催化降解为模型反应,研究了CdS/TiO2/漂珠的光催化性能,探讨了影响催化剂活性的因素及采用太阳光作光源处理BEC的可行性.结果表明,CdS/TiO2/漂珠投加量为3 000mg·L-1,初始浓度为45 mg·L-1、初始pH为6.5,通气量为200 mL·min-1时间为60 min,BEC降解率分别为92.1%(125W高压汞灯)和79.3%(5 W紫外灯),采用太阳光照射300 min,BEC降解率可达93.4%.BEC的降解反应遵从L-H动力学模型,测得反应速率常数9.80 mg·(L·min)-1,吸附常数4.36×10-3 L·mg-1.  相似文献   

8.
崔永锋  袁志好 《物理学报》2006,55(10):5172-5177
采用胶体化学法制备表面修饰的二氧化钛纳米材料,并使用XRD,TEM,UV-vis光谱等手段研究表面修饰的二氧化钛纳米微粒的结构相变和光吸收性质.结果表明,表面修饰可以改变二氧化钛的晶化行为、加快锐钛矿→金红石的相变进程、引起二氧化钛纳米粒子的光吸收带边大幅度红移.光吸收系数与光子能量之间关系的计算分析显示,在吸收带边附近,二氧化钛纳米微粒溶胶及二氧化钛纳米薄膜的(αhν)1/2vs (间接)和(αhν)2 vs (直接)均呈线性关系,其间接和直接光学带隙能可以分别通过外推这种线性关系来测量. 关键词: 二氧化钛纳米材料 结构相变 表面改性 光吸收  相似文献   

9.
"利用RuO2/TiO2前驱体溶胶,采用溶胶-凝胶-浸渍法在漂珠(FP)表面沉积RuO2/TiO2膜,经120 ℃干燥、500 ℃焙烧制备复合光催化剂RuO2/TiO2/FP,并通过SEM、XRD以及FT-IR分别对其结构进行了表征. 结果表明,RuO2/TiO2膜的平均厚度(三层)约1 1m,膜材料中TiO2主要呈现锐钛矿型结构,而RuO2是以非晶态高度分散在粒子表面.以高效氯氰菊酯杀虫剂的光催化降解为模型反应,研究了RuO2/TiO2/FP的光催化性能,探讨了影响催化剂活性的因素及采用太阳光做光源处理  相似文献   

10.
潘永强  杨琛 《应用光学》2018,39(3):400-404
为了探究二氧化钛(TiO2)薄膜表面粗糙度的影响因素, 利用离子束辅助沉积电子束热蒸发技术对不同基底粗糙度以及相同基底粗糙度的K9玻璃完成二氧化钛(TiO2)光学薄膜的沉积。采用TalySurf CCI非接触式表面轮廓仪分别对镀制前基底表面粗糙度和镀制后薄膜表面粗糙度进行测量。实验表明, TiO2薄膜表面粗糙度随着基底表面的增大而增大, 但始终小于基底表面粗糙度, 说明TiO2薄膜具有平滑基地表面粗糙的作用; 随着沉积速率的增大, 薄膜表面粗糙度先降低后趋于平缓; 对于粗糙度为2 nm的基底, 离子束能量大小的改变影响不大, 薄膜表面粗糙度均在1.5 nm左右; 随着膜层厚度的增大, 薄膜表面粗糙度先下降后升高。  相似文献   

11.
TiO2/SnO2复合氧化物的制备和光谱特性   总被引:6,自引:0,他引:6  
为了研究TiO2/SnO2复合氧化物的光学特性,用胶体化学方法制备了以SnO2为内核的TiO2/SnO2复合氧化物,并且用紫外-可见光吸收光谱、X射线衍射和红外光谱对TiO2/SnO2复合氧化物的特性进行了分析.结果显示TiO2和TiO2/SnO2的能带宽度分别为4.13和3.86 eV,表现出量子尺寸效应;TiO2/SnO2在紫外区域具有宽的强吸收带.X射线衍射中TiO2的(110)衍射峰的位置移动了1.6°,强度也发生了变化;与TiO2红外光谱相比,TiO2/SnO2中Ti-O键的伸缩振动由500cm-1移到了656 cm-1,并有560 cm-1的肩峰,与吸附水相应的1650 cm-1附近的吸收峰和3420 cm-1的吸收峰均有所增加.  相似文献   

12.
以氯化醇钛盐表面反应法制备系列TiO2/SiO2,根据XRD,Raman和DRS表征分析,载体表面具有分子级分散的锐钛矿型TiO2微晶粒子和非晶TiOx物种.与本体TiO2相比,TiO2/SiO2的吸收带边显著蓝移,能隙增大为3.96 eV.当金属M(M:Pd,Cu和Ni)负载于TiO2/SiO2表面,可使其光吸收域扩展到可见光区,并引起吸收带边红移.相对Pd的负载,Cu,Ni的负载对TiO2/SiO2的LMCT带影响更大,其中Cu-TiO2/SiO2的能隙减小为3.68 eV.当金属氧化物MoO3负载于TiO2/SiO2上时,可以调变TiO2/SiO2的吸收带边并增强对可见光的吸收;随MoO3载量的增加,表面物种的相互作用增强,形成Mo-O-Ti复合结构,增强了LMCT带的吸收强度,并使能隙减小为3.81 eV.  相似文献   

13.
通过TiCl4水解与超细石英粉制备TiO2/SiO2复合材料,红外光谱表明TiO2与SiO2发生键合作用,形成了Si-O-Ti的网络结构,XRD结果表明TiO2/SiO2复合材料为锐钛矿晶型结构,透射电镜结果表明复合粒子之间有团聚现象.以TiO2/SiO2复合材料对甲基橙进行降解,光催化120min可达到69%的降解率...  相似文献   

14.
制备Cu掺杂的纳米Sn O2/Ti O2溶胶,采用旋涂法在载玻片上镀膜,经干燥、煅烧制得Cu掺杂的Sn O2/Ti O2薄膜,通过对比实验探讨掺杂比例、条件、复合形式等对结构和性能的影响。采用XRD、SEM、EDS、UVVis等测试手段对样品进行表征,并以甲基橙为探针考察了其光催化降解性能。XRD测试结果显示薄膜的晶型为锐钛矿型,结晶度较高。SEM谱图显示薄膜表面无明显开裂,粒子分布均匀,粒径约为20 nm。EDS测试结果表明薄膜材料中含有Cu元素,谱形一致。UV-Vis吸收光谱表明Cu掺杂以及Sn O2/Ti O2的复合使得在近紫外区的光吸收比纯Ti O2明显增强。光催化实验表明Cu掺杂后使得Sn O2/Ti O2复合薄膜对甲基橙的光催化降解效率进一步提高,Sn O2/Ti O2复合薄膜的光催化活性在10%Cu掺杂时达到最高。  相似文献   

15.
采用特殊液相沉淀法制备纳米级的TiO2/SnO2复合粒子,对制备的纳米TiO2/SnO2采用XRD、TEM等手段进行了表征。用它做催化剂在日光下对甲基橙溶液进行了光催化实验。结果表明,纳米级TiO2/SnO2复合催化剂比纯TiO2的催化活性好,当SnO2摩尔百分数为20%时效果最佳,在60min内对10mg/L的甲基橙水溶液的降解率高达90.2%,具有较好的光催化活性。  相似文献   

16.
采用532nm、632.8nm和785nm三种不同波长激光束,研制适用于各波长的TiO_2-AgNPs基底,检测罗丹明6g(R6g)和健康人血清两种样品的表面增强喇曼光谱(SERSp),并验证不同波长激光激励对SERSp指纹谱的影响.结果表明:当提拉速度达到200mm/min时,TiO_2薄膜光催化活性不再增加;在440℃~600℃范围内,TiO_2晶型均为锐钛矿结构;膜厚、温度及紫外灯照射时间共同影响银粒子生长,200mm/min提拉速度、520℃煅烧温度及紫外光照射80min条件下获得的TiO_2-AgNPs基底具有较好喇曼增强效果;不同波长激励对SERSp各谱线的增强影响明显,在532nm波长激励的SERSp中,大波数的谱峰增强因子明显高于小波数的谱峰,在785nm波长激励的SERSp中正好相反,而在632.8nm波长激励的SERSp中,大、小波数谱峰增强因子比较均一;不同波长激励样品SERSp指纹谱有明显的差异.  相似文献   

17.
PS (polystyrene)/TiO2, TiO2 coated onto PS by a hydrolysis reaction, was prepared as a white pigment for electronic paper (e-paper). Two key parameters, density and zetapotential, were precisely controlled for use as a white pigment. The density was manipulated by changing the mixture ratio of EtOH to H2O, and the concentration of titanium tetrabutoxide (TBO) in the hydrolysis reaction. The modification of PS/TiO2 with (3-aminopropyl)triethoxy silane (APTES) and acetic acid showed positive zetapotential originated from the mutual effects between an amino functional group in APTES, and a proton from acetic acid. The mutual effect was studied, and PS/TiO2 with density of 1.6 g/cm2 and zetapotential of 75 mV was prepared using the results.  相似文献   

18.
Photocatalyst‐assisted degradation of organic pollutants, which exhibits a novel strategy for solar‐energy utilization, possesses enormous potential in various applications. Extending the light‐absorption range in the spectrum of sunlight and improving light‐conversion efficiency are always primary issues to enhance the catalytic performance of these photocatalysts. Herein, a new structure of gold‐nanorod‐decorated TiO2 rambutan‐like microspheres is designed, which exhibits superior photocatalytic ability toward Rhodamine B in the range of visible light due to the 3D distribution of the TiO2 branches on the surface of the microspheres, which prompts the multireflection of photons. The absorption rate of photons is thereby tremendously enhanced. This is beneficial for the generation of hot electrons originating from the localized surface plasmonic resonance of Au nanorods, which can be used to both initiate the reaction and produce the photothermal effect. Hot electrons generated by a single Au nanorod in microspheres to initiate the degradation reaction can be as high as 2.5 times of those in the nanowires' counterpart. Moreover, the heating power of a single Au nanorod in microspheres reaches up to 4.4 times higher than that in nanowires, which further accelerates the degradation rate. The reaction pathway of visible‐light‐assisted RhB degradation catalyzed by Au/TiO2 microspheres goes through an initial N‐deethylation process instead of the complete cycloreversion catalyzed by pure TiO2 microspheres under UV irradiation. This strategy of structure design for improved photon absorption, which achieves high degradation rate and photothermal effect, is promising for the development of novel photocatalysts.  相似文献   

19.
纳米TiO2的表面能态及光生电子-空穴对复合过程的研究   总被引:9,自引:1,他引:8  
以液相法制备了水溶态纳米TiO2,并通过X射线衍射(XRD)、X射线光电子能谱(XPS)和傅里叶红外光谱仪(FTIR)对纳米TiO2的结构和组成作了细致分析.并对其紫外-可见光谱(UY-Vis spectrum)和荧光发光光谱(PL spectrum)进行了分析.结果发现纳米TiO2呈现较好的锐钛矿型,平均粒径为5 nm.水溶态纳米TiO2由于吸附而在表面形成了Ti-OH和Ti-H2O的表面态,其能级位于其价带以上约0.6和0.54eV;500℃热处理后样品的表面吸附水基本消失,但OH-仍然存在,同时在纳米TiO2晶格中出现了氧空位,其能级位于价带以上3.13 eV.对于水溶态纳米TiO2,表面复合是电子-空穴对的主要复合过程;热处理后的样品,由于表面态遭到破坏,粒子半径变大,直接复合成为电子-空穴对的主要复合过程,同时还伴随有通过氧空位的间接复合和通过Ti-OH的表面复合.  相似文献   

20.
担载ZnTHPP的TiO2杂化材料的制备及结构表征   总被引:1,自引:1,他引:0  
采用溶胶-凝胶(Sol-gel)法将四(对-羟基)苯基锌卟啉(ZnTHPP)担载于TiO2机网络中,得到了一种新的有机/无机杂化材料.利用热重(TG)、红外光谱(FTIR)、紫外(UV)及固体漫反射光谱(DRS)、扫描电镜(SEM)对杂化材料的结构和形貌进行了表征,结果表明ZnTHPP/TiO2杂化材料具有良好的热稳定性,锌卟啉以化学键的形式与TiO2结合,并且锌卟啉的加入有效地拓宽了TiO2的可见光吸收范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号