首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
对常温下磷光染料Ir(ppy)3掺杂PVK薄膜的光致发光(PL)和电致发光(EL)特性进行了研究。器件结构为ITO/PEDOT:PSS/PVK:Ir(ppy)3/BCP/Alq3/Al。实验发现随磷光材料掺杂浓度的不同,器件的发光性能发生变化。当浓度适宜时,主体材料PVK的发光很弱,主要为Ir(ppy)3的磷光发射。通过L-I-V特性曲线的比较,掺杂浓度为5%的光电性能最好,说明器件在掺杂浓度为5%时效果最佳。  相似文献   

2.
Ir(PPY)3掺杂PVK的电致发光机理   总被引:5,自引:4,他引:1       下载免费PDF全文
近几年来发展起来的电致磷光(electrophosphorescence)是有机发光二极管(OLED)研究的新生长点。对电致磷光发光机理的研究随即得到了人们普遍的关注。比较了不同正向偏压条件下Ir(PPY)3掺杂聚乙烯基咔唑(PVK)的光致发光(PL)和电致发光(EL)光谱。研究结果显示在电场和注入电流的共同作用下,PL光谱中基质PVK发光的相对强度并没有发生显著的变化。电场或注入载流子不会影响PVK向Ir(PPY)3的能量传递。磷光掺杂聚合物EL主要是由于载流子在掺杂磷光分子上的直接复合,而不是由基质向磷光掺杂分子的能量传递。  相似文献   

3.
将高量子效率的磷光材料fac-tris-2-phenylpyridine iridium(III) (Ir(ppy)3)按不同的比例掺杂到具有载流子传输能力的主体材料poly(N-vinylcarbazole) (PVK)中作为发光层制备磷光电致发光器件。通过对器件发光机制的研究,发现光致发光过程中起主导作用的是Fo¨ster能量转移机制;而在电致发光过程中,器件的发光性能受Dexter能量转移和电荷陷获2种能量传递形式的影响。器件的I-V-L特性表明:Ir(ppy)3的掺杂比例为5%时,器件的光功率效率最大,能量转移最充分。  相似文献   

4.
唐晓庆  于军胜  李璐  王军  蒋亚东 《物理学报》2008,57(10):6620-6626
通过对一种新型贵金属铱的配合物磷光材料(pbi)2Ir(acac)与咔唑共聚物进行物理掺杂, 制备了结构为indium-tin oxide(ITO)/poly(N-vinylcarbazole)(PVK): (pbi)2Ir(acac)(x)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)(20nm)/8-Hydroxyquinoline aluminum(Alq3)(10nm)/Mg:Ag的聚合物电致磷光器件,研究了磷光聚合物掺杂体系在低掺杂浓度时(0.1%和0.5%(质量百分数,全文同))的光致发光(PL)和电致发光(EL)特性. 结果表明, 该掺杂体系的PL光谱和EL光谱中均同时存在主体材料PVK与磷光客体(pbi)2Ir(acac)的发光光谱, 但主客体的发射强度不同,推测该掺杂体系在电致发光条件下, 同时存在主体材料到客体的不完全的能量传递和载流子直接俘获过程. 磷光掺杂浓度为0.1%的器件在19V电压下实现了白光发射, 色坐标为(0.32, 0.38), 掺杂浓度为0.5%的器件在20.6V电压下的最大发光亮度为11827 cd·m-2, 而在13.4V电压下的最大流明效率为4.13 cd·A-1. 关键词: 有机电致发光器件 铱配合物磷光 聚合物掺杂  相似文献   

5.
从三线态激子的发光机理入手,研究了PBD作为电子传输材料对PVK:Ir(ppy)3体系的影响。实验中制备了单层器件ITO/PVK:Ir(ppy)3/PBD/Al,ITO/PVK:Ir(ppy)3:PBD/Al和双层器件,ITO/PVK:Ir(ppy)3:PBD/BCP/Al,其中PVK:Ir(ppy)3的掺杂浓度比例不变,通过改变PBD的掺杂浓度,其变化范围是PBD与PVK的质量比从0:100到20:100,制得了一系列器件,研究了它们的光致发光(PL)光谱和电致发光(EL)光谱。发现PBD这种电子传输材料的加入对器件的亮度有很大提高,当PBD与PVK质量比为10%时,器件亮度最大。  相似文献   

6.
磷光材料由于可以利用电致激发所形成的单重态和三重态激子,因而可以得到接近100%的内量子效率。文章对常温下基于磷光材料Ir(ppy)3及Ir(piq)3掺杂PVK薄膜为发光层的器件的光学和电学特性进行了研究。光致发光的结果显示相同掺杂质量比下由PVK到Ir(piq)3的能量传递比到Ir(ppy)3更加困难。通过研究两种掺杂体系不同质量比的电致发光特性,可以认为这两种磷光器件的发光主要来自于磷光客体分子直接俘获载流子发光而非主体的能量传递。Ir(piq)3掺杂体系对掺杂比例的依赖更为明显,从能级结构分析,认为是由于Ir(piq)3的更低的HOMO及高的LUMO能级,而比Ir(ppy)3具有更好的载流子俘获和传输特性。  相似文献   

7.
OLED技术被认为是最有可能取代液晶显示的全新技术,而OLED中的有机电致磷光器件是近年来的研究热点.有机电致磷光器件的发光层往往采用主客体掺杂体系,主客体分子内的能量传递是磷光发光体分子被激发的主要途径,因此选择吸收能量和传递能量好的主体材料是改进有机电致磷光器件性能的主要途径之一.文章分别以PVK和CBP作为主体材料,以磷光材料Ir(PPY)3和荧光材料Rubrene作为掺杂剂,制备了不同配比的器件,研究了主体材料和掺杂剂之间的能量传递特性.结果发现,这两种主体材料分别通过Ir(ppy)3向Rubrene传递能量是主要的能量传递机制,而且CBP作为主体时能量传递比PVK更充分.另外掺入Ir(ppy)3后的器件比不掺Ir(ppy)3的器件在相同电压下的光功率明显增强.当我们增加Ir(PPY)3的浓度时,相同电压下的光功率下降,浓度猝灭效应增强.  相似文献   

8.
Ir(PPY)3对Rubrene荧光材料的敏化性研究   总被引:1,自引:1,他引:0  
最近几年,磷光器件是有机电致发光研究领域和产业化的一大热点。在实验中作者发现PVK∶PBD∶Rubrene共掺体系的发光中存在较强的PVK发光,能量传递不充分。由于一些具有重金属离子的有机物,存在强的自旋-轨道耦合作用,引入到共掺体系可以充分利用单线态和三线态的发光,从而获得高于一般有机材料器件所达到的内量子效率。为获得单色性较好的Rubrene发光,作者将磷光敏化剂Ir(ppy)3引入到PVK∶PBD∶Rubrene共掺溶液中,得到了纯正Rubrene发光,Forester能量传递也更加充分。当进一步提高Rubrene掺杂浓度以后,单色性Rubrene发光更加明显,并讨论了Ir(ppy)3所起的作用和器件的发光机理。磷光材料与有机小分子材料共掺的方法,可以有效提高器件的发光亮度及效率。  相似文献   

9.
张鹏  周印华  刘秀芬  田文晶  李敏  张国 《物理学报》2006,55(10):5494-5498
研究了不同比例的PVK与齐聚PPV衍生物DBVP掺杂体系的能量转移和发光特性.通过对PVK,DBVP及PVK:DBVP掺杂体系的UV-vis,PL和PLE光谱的研究,分析了PVK与DBVP之间的能量转移过程.利用PVK在体系中类似于溶剂的分散作用,制备了结构为ITO/PEDOT/PVK:DBVP/LiF/Al的电致发光器件,研究了掺杂体系的电致发光性能.结果表明,在掺杂体系的光致发光和电致发光中,PVK的发射被有效地抑制,PVK与DBVP之间发生了非常有效的能量转移,通过调节PVK与DBVP的比例,可以获得蓝色和绿色发光,同时可以改善器件的发光性能,当PVK与DBVP的重量比为1∶2时,器件的绿色发光效率达到1·06cd/A,此时发光亮度为52cd/m2.  相似文献   

10.
张鹏  周印华  刘秀芬  田文晶  李敏  张国 《物理学报》2006,55(10):5494-5498
研究了不同比例的PVK与齐聚PPV衍生物DBVP掺杂体系的能量转移和发光特性.通过对PVK,DBVP及PVK: DBVP掺杂体系的UV-vis,PL和PLE光谱的研究,分析了PVK与DBVP之间的能量转移过程.利用PVK在体系中类似于溶剂的分散作用,制备了结构为ITO/PEDOT/PVK: DBVP/LiF/Al的电致发光器件,研究了掺杂体系的电致发光性能.结果表明,在掺杂体系的光致发光和电致发光中,PVK的发射被有效地抑制,PVK与DBVP之间发生了非常有效的能量转移,通过调节PVK与DBVP的比例,可以获得蓝色和绿色发光,同时可以改善器件的发光性能,当PVK与DBVP的重量比为1∶2时,器件的绿色发光效率达到1.06cd/A,此时发光亮度为52cd/m2.  相似文献   

11.
红光量子点掺杂PVK体系的发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘志民  赵谡玲  徐征  高松  杨一帆 《物理学报》2014,63(9):97302-097302
无热处理制备了红光CdSe/ZnS量子点掺杂PVK的ITO/PVK:QDs/Alq3/Al结构电致发光器件.测试器件的发光光谱和电学特性等,研究了掺杂浓度(质量分数)对体系发光特性的影响,将非掺杂与掺杂体系做了比较,提出了优化掺杂体系的一些可行方案.量子点掺杂浓度较低时,主要为Alq3的发光;掺杂浓度为20%时,Alq3的发光得到抑制,红光发射最佳;继续增大掺杂浓度,QDs发光峰发生微弱红移,器件性能变差.与非掺杂体系相比,掺杂浓度合适的PVK:QDs体系大大提高了器件的稳定性.  相似文献   

12.
合成了一种新型的稀土配合物Eu(TTA)(2NH_2-Phen)_3,将其作为掺杂物与基质聚乙烯基咔唑(PVK)按照不同质量比混合共溶,旋涂成膜.测量了混合薄膜的光致发光光谱,确认了所合成的Eu(TTA)(2NH_2H-Phen)_3具有发射荧光的能力,进而将其应用于电致发光器件中.还制备了以PVK:Eu(TTA)(2NH_2-Phen)_3为发光层,器件结构为ITO/PVK:Eu(TTA)(2NH_2-Phen)3/2,9-dimethy1-4,-diphenyl-1,10-plaenan thmline(BCP)/8-hydroxyquinoline aluminum(Alq_3)/Al的多层器件,得到了 Eu~(3+)的红色电敛发光.研究不同掺杂浓度时器件发光光谱的变化及PVK的发射光谱与Eu(TTA)(2NH_2-Phen)_3的吸收光谱的交叠情况,证明了混合薄膜中Eu~(3+)电致发光机理主要足载流子的直接俘获.  相似文献   

13.
High performance polymer light-emitting diodes (PLEDs) based on a phosphor of noble metal complex bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] doped in poly(N-vinylcarbazole) (PVK) host with various concentration were demonstrated. The photoluminescence (PL) and electroluminescence (EL) spectra of the PLEDs exhibited an emission intensity decrease of PVK and a gradually enhanced feature of (pbi)2Ir(acac) with increased doping concentration. The device with a 5 wt% (pbi)2Ir(acac) doped PVK system showed a high power efficiency of 3.84 lm/W and a luminance of 26,006 cd/m2. The results indicated that both energy transfer and charge trapping have a significant influence on the performance of PLEDs. The devices have a broadened EL spectrum of full-width at half-maximum (FWHM) more than 100 nm, which can be realized for WOLEDs.  相似文献   

14.
将一种新型稀土铕配合物Eu(UVA)3 Phen作为掺杂剂与基质PVK按不同质量比进行掺杂,对混合薄膜的光致发光(PL)和电致发光(EL)特性进行了研究.实验结果表明,共掺杂体系中存在从PVK到Eu(UVA)3 Phen的F(o)rster能量传递.通过优化主客体材料的配比浓度,当掺杂浓度为4%时,得到了色纯度较好地红...  相似文献   

15.
有机混合薄膜中的F(o)rster能量转移   总被引:1,自引:1,他引:0  
吴鹏  杨立功  刘旭  叶辉  路胜利 《光学学报》2005,25(3):369-372
通过掺杂不同的染料有机电致发光器件可以得到不同颜色的光发射。掺杂小分子有机材料?p酸四甲酯perylene-3,4,9,10-tetracarboxylicacid(TMEP)到蓝色发光聚合物poly(N-vinyl-carbazole)聚乙烯基咔唑(PVK),得到了很好的绿光发射。TEMP掺杂质量分数为0.01时,295. 5nm激发波长的荧光光谱可以明显观察到在420 nm处PVK和530 nm处TEMP的发射峰值;当TMEP掺杂质量分数达到0.05~0.10之间,器件的电致发光光谱和荧光光谱发射峰几乎完全被TEMP的绿光所占据。光谱的转移归因于从聚合物PVK到小分子有机材料TMEP的Forster能量转移。荧光光谱中随着TMEP掺杂浓度的的增大发射峰值有明显的红移,这种现象被归因于在TMEP高浓度掺杂情况下激基缔合物的形成。激基缔合物的形成从TMEP在薄膜状态下与溶液状态下的荧光光谱的比较中得到证实。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号